首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pitting corrosion behavior of melt spun ribbon made at a wheel speed of 20 ms in 3.5 wt% NaCl solution and nonisothermal and isothermal oxidation behavior of 2 mm diameter rod samples of newly developed Zr58Cu22Fe4Co4Al12 bulk metallic glass have been studied. The pitting corrosion is more on the air side as compared to the wheel side mainly due to the presence of air pockets. The pitted regions are enriched with copper suggesting dealloying effect due to its noble nature. The alloy shows very good oxidation resistance compared to some of the exiting bulk metallic glass forming alloys. The oxidation leads to the formation of mainly tetragonal ZrO2 with the presence of monoclinic ZrO2, mixture of CuO and Cu2O and Al2O3. Copper in the alloy oxidized progressively with the appearance of white flowery globule shape which later forms interconnected faceted CuO network.  相似文献   

2.
The microstructure and corrosion behavior of as-cast and heat-treated Al-4.5 pct Cu-2.0 pct Mn alloy specimens solidified at various cooling rates were investigated. The equilibrium phases Al6Mn and θ-Al2Cu, which are observed in the conventionally solidified alloy in the as-cast condition, were not detected in rapidly solidified (melt-spun) material. Instead, the ternary compound Al20Cu2Mn3 was present in addition to the α phase, which was present in all cases. The morphological and kinetic nature of corrosion was investigated metallographically and through potentiostatic techniques in 3.5 wt pct NaCl aqueous solution. Corrosion of the as-cast material was described by two anodic reactions: corrosion of the intermetallic phases and pitting of the α-Al solid solution. The corrosion rate increased with cooling rate from that for the furnace-cooled alloy to that for the copper mold-cast alloy and, subsequently, decreased in the rapidly solidified alloy. In the heat-treated material, corrosion could be described by two anodic reactions: corrosion of Al20Cu2Mn3 precipitate particles and pitting of the α-Al matrix. S.M. Skolianos, formerly Graduate Student, Department of Metallurgy, University of Connecticut  相似文献   

3.
Cu-based Cu-Zr-Al metallic glass samples with diameters of more than 10?mm could be produced in a composition range of 45 to 52 (at. pct) Cu, 41 to 47?at.?pct Zr, and 6 to 10?at.?pct Al by a copper mold casting method. The best glass-forming ability was obtained for the Cu47Zr45Al8 alloy, and the glassy sample with a diameter of 15?mm was fabricated. The minor addition of Ag or Dy can enhance the glass-forming ability of the Cu47Zr45Al8 alloy, which decreases the liquidus temperatures, leading to increase in the reduced glass transition temperature. Fully glassy samples with diameters up to 20?mm were obtained for a (Cu0.47Zr0.45Al0.08)98Dy2 alloy.  相似文献   

4.
Analytical electron microscopy studies were conducted on a rapidly solidified Al-8.8Fe-3.7Ce alloy and arc melted buttons of aluminum rich Al-Fe-Ce alloys to determine the characteristics of the metastable and equilibrium phases. The rapidly solidified alloy consisted of binary and ternary metastable phases in the as-extruded condition. The binary metastable phase was identified to be Al6Fe, while the ternary metastable phases were identified to be Al10Fe2Ce and Al20Fe5Ce. The Al20Fe5Ce was a decagonal quasicrystal while the Al10Fe2Ce phase was determined to have an orthorhombic crystal structure belonging to space group Cmmm, Cmm2, or C222. Microscopy studies of RS alloy and cast buttons annealed at 700 K established the equilibrium phases to be Al13Fe4, Al4Ce, and an Al13Fe3Ce ternary phase which was first identified in the present study. The crystal structure of the equilibrium ternary phase was determined to be orthorhombic with a Cmcm or Cmc2 space group. The details of X-ray microanalysis and convergent beam electron diffraction analysis are described.  相似文献   

5.
The effects of La on the catalytic performance,SO2 and H2O resistance of Cu-Ce/TNU-9 catalyst were studied in the selective catalytic reduction of NOx via ammonia(NH3-SCR).The results show that the La doped Ce-Cu/TNU-9(CCL/T9) catalyst exhibits better SCR performance than Ce-Cu/TNU-9(CC/T9) and Cu/TNU-9(C/T9) in the wide temperature window(200-450 ℃) due to La benefiting from enhancing Cu++Ce4+?Cu2+-+Ce3+ to facilitate ...  相似文献   

6.
Amorphous solid-solution Cu75Hf20Dy05, which undergoes devitrification without changing composition either locally or globally, was used to examine the effects of structural ordering on corrosion properties in the absence of any accompanying chemical partitioning. Melt spun amorphous Cu75Hf20Dy05 undergoes single-phase devitrification to a Cu51Hf14 phase. The difference in corrosion behavior between these two structures was explored in hydrofluoric acid solutions where preferential dissolution of hafnium occurred. Preferential Hf dissolution occurred more readily in the amorphous alloy compared with its crystalline counterpart. Remaining copper reorganized to form a face-centered cubic (fcc) nanostructure in both conditions, but this process occurred quickly in the amorphous state and more slowly in the crystalline variant. A uniform, nanoporous Cu sponge structure, with a pore diameter of approximately 10?nm, formed after dissolution in the amorphous state. A less uniform, nanoporous structure developed more slowly when occurring from the crystalline state. These differences were traced to the effects of ordering on both dissolution and surface diffusion.  相似文献   

7.
8.
Diffusion brazing of Al-6061 alloy containing 15 vol. pct Al2O3 particles was attempted using Cu-Sn interlayer. Joint formation was attributed to the solid-state interdiffusion of Cu and Sn followed by eutectic formation and subsequent isothermal solidification. Examination of the joint region using scanning electron microprobe analyzer (EPMA), wavelength dispersive spectroscopy (WDS) and X-ray diffraction (XRD) showed the formation of intermetallic phases such as Al7Cu3Mg3, Mg2Cu6Al5, Cu3Sn, and Mg2Sn. The results indicated an increase in joint strength with increasing bonding time giving the highest joint shear strength of 94 MPa at a bonding duration of 3 hours.  相似文献   

9.
REMg 8.35Ni2.18Al0.21 (RE=La, Ce, Pr, and Nd) alloys were prepared by induction melting and following annealing. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the alloys were composed of Mg2Ni, (La, Pr, Nd)Mg2Ni, (La, Ce)2Mg17 , (Ce, Pr, Nd)Mg12 and Ce2Ni7 phases. The above phases were disproportioned into Mg2NiH4 , MgH2 and REH x (x=2.51 or 3) phases in hydriding. CeH2.51 phase transformed into CeH2.29 phase in dehydriding, whereas LaH3 , PrH3 and NdH3 phases remained unchanged. The PrMg8.41Ni2.14Al0.20 alloy had the fastest hydriding kinetics and the highest dehydriding plateau pressure while the CeMg8.35Ni2.18Al0.21 alloy presented the best hydriding/dehydriding reversibility. The onset hydrogen desorption temperature of the CeMg8.35Ni2.18Al0.21 hydride decreased remarkably owing to the phase transformation between the CeH2.51 and the CeH2.29 .  相似文献   

10.
Interdiffusion in couples consisting of pure copper and a Cu-12.2 at. pet A1 alloy has been studied in the temperature range between 977 and 1277 K. Concentration of aluminum was determined by EPMA. The interdiffusion coefficient increased with the atomic fraction of aluminum, Nai, in solid solution: D0(m2/s) = 0.43 × 10-4 and Q (kJ/tool) =194000 — 180000 Na1 The Kirkendall effect has also been studied in the temperature range from 977 to 1277 K. The markers moved toward the aluminum-rich side. The ratio of the tracer-diffusion coefficient of aluminum, D * Al , to that of copper, D * Cu , at the marker position where Na1 = 0.073, was estimated at 1.7 to 3.7; this ratio showed a tendency to increase with temperature.  相似文献   

11.
Al-Si alloys are materials that have been developed over the years to meet the increasing demands of the automotive industry for smaller, lighter-weight, high-performance components. An important alloy in this respect is the 319 alloy, wherein silicon and copper are the main alloying elements, and magnesium is often added in automotive versions of the alloy for strengthening purposes. The mechanical properties are also ameliorated by modifying the eutectic silicon structure (strontium being commonly employed) and by reducing the harmful effect of the β-Al5FeSi iron intermetallic present in the cast structure. Magnesium is also found to refine the silicon structure. The present study was undertaken to investigate the individual and combined roles of Mg and Sr on the morphologies of Si, Mg2Si, and the iron and copper intermetallics likely to form during the solidification of 319-type alloys at very slow (close to equilibrium) cooling rates. The results show that magnesium leads to the precipitation of Al8Mg3FeSi6, Mg2Si, and Al5Mg8Cu2Si6 intermetallics. With a strontium addition, dissolution of a large proportion of the needle-like β-Al5FeSi intermetallic in the aluminum matrix takes place; no transformation of this phase into any other intermetallics (including the Al15(Fe,Mn)3Si2 phase) is observed. When both Mg and Sr are added, the diminution of the β-Al5FeSi phase is enhanced, through both its dissolution in the aluminum matrix as well as its transformation into Al8Mg3FeSi6. The reactions and phases obtained have been analyzed using thermal analysis, optical microscopy, image analysis, and electron microprobe analysis (EMPA) coupled with energydispersive X-ray (EDX) analysis.  相似文献   

12.
Commercially pure copper was joined to a 1050 aluminum alloy by friction stir welding. A specific configuration where the tool pin was fully located in the aluminum plate was chosen. In such a situation, there is no mechanical mixing between the two materials, but frictional heating gives rise to a significant thermally activated interdiffusion at the copper/aluminum interface. This gives rise to the formation of defect-free joints where the bonding is achieved by a very thin intermetallic layer at the Cu/Al interface. Nanoscaled grains within this bonding layer were characterized using transmission electron microscopy (TEM). Two phases were identified, namely, Al2Cu and Al4Cu9 phases. The nucleation and growth of these two phases are discussed and compared to the standard reactive interdiffusion reactions between Cu and Al.  相似文献   

13.
In order to investigate the influence of MnO2 modification methods on the catalytic performance of CuO/CeO2 catalyst for NO reduction by CO,two series of catalysts(xCuyMn/Ce and xCu/yMn/Ce) were prepared by co-impregnation and stepwise-impregnation methods,and characterized by means of X-ray diffraction(XRD),Raman spectra,H2-temperature programmed reduction(H2-TPR),in situ diffuse reflectance infrared Fourier transform spectra(in situ DRIFTS) techniques.Furthermore,the catalytic performances of these catalysts were evaluated by NO+CO model reaction.The obtained results indicated that:(1) The catalysts acquired by co-impregnation method exhibited stronger interaction owing to the more sufficient contact among each component of the catalysts compared with the catalysts obtained by stepwise-impregnation method,which was beneficial to the improvement of the reduction behavior;(2) The excellent reduction behavior was conducive to the formation of low valence state copper species(Cu+/Cu0) and more oxygen vacancies(especially the surface synergetic oxygen vacancies(SSOV,Cu+-□-Mn(4–x)+)) during the reaction process,which were beneficial to the adsorption of CO species and the dissociation of NO species,respectively,and further promoted the enhancement of the catalytic performance.Finally,in order to further understand the difference between the catalytic performances of these catalysts prepared by co-impregnation and stepwise-impregnation methods,a possible reaction mechanism(schematic diagram) was tentatively proposed.  相似文献   

14.
The steady-state corrosion rate of 0.4 pct As-10 pct Sb-Pb anodes in H2SO4 copper electro-winning electrolytes was studied. The corrosion rate increases markedly with increasing acid strength and current density, although the corrosion per pound of copper electrowon is affected only slightly by current density. Several ions such as Cu+2, Mg+2, Al+3, SiO3 -2 and Na+ have no effect on the corrosion while Fe+S and Ni+2 ions have moderate inhibiting effects. Strong corrosion inhibition is brought about by introducing small amounts of Co*2 into the solution or by substituting a Ca-Pb alloy for the conventional antimonial lead anodes.  相似文献   

15.
《粉末冶金学》2013,56(5):361-367
Abstract

Mechanical alloying of Al65Cu20Ti15 powder blend has been carried out by high energy vibrating ball mill. The process of amorphisation in the mechanically alloyed Al65Cu20Ti15 powder and the stability of the amorphous phase during ball milling were investigated. Almost completely amorphous powder was achieved after 25 h ball milling. Examination of the microstructural constituents using X-ray diffraction and transmission electron microscopy shows that the amorphisation process was controlled by the transformation of both Al based solid solution and intermetallic compounds (Al2Cu, Cu9Al4 and AlCu2Ti). However, that prolonging the ball milling time to 30 h led to the appearance of Cu9Al4, the Al65Cu20Ti15 composite comprising nanocrystalline and amorphous phases could be stable after 50 h ball milling.  相似文献   

16.
The stable and metastable precipitate phases which form during mechanical alloying of a rapidly solidified (RS) Al-8.4Fe-3.4Ce alloy have been unambiguously identified using X-ray diffraction, transmission electron microscopy (TEM), and energy dispersive spectroscopy techniques. The metastable Al10Fe2Ce and stable Al13Fe3Ce and Al13Fe4 intermetallic phases, with crystal structures and lattice parameters as reported in the literature, have been identified. It is shown that the metastable Al10Fe2Ce intermetallic phase particles have elongated shapes and their sizes range between 100 and 200 ran and are free of any localized faults, whereas the equilibrium Al13Fe3Ce and Al13Fe4 intermetallic phases are equiaxed in shape and have particle sizes ranging from 200 to 500 nm. It is suggested that the presence of the metastable Al10Fe2Ce in this material is due to its incomplete transformation to the equilibrium Al13Fe3Ce phase.  相似文献   

17.
采用快速凝固与去合金化相结合的方法制备纳米多孔Ni-Co合金,退火后获得纳米多孔NiCo_2O_4材料,用XRD,SEM和TEM分析多孔NiCo_2O_4的相组成和微观结构,并通过循环伏安、恒电流充放电等方法测试多孔NiCo_2O_4电极的电化学性能。结果表明:前驱体Ni1.7Co3.3Al95合金经去合金化和退火后,可获得由10~15 nm厚的纳米片状骨架与孔径30~80 nm的孔隙共同构成的三维纳米多孔NiCo_2O_4。特殊的三维双连续结构使NiCo_2O_4电极表现出良好的超电容性能,在1 A/g的电流密度下,其比电容达755 F/g;当电流密度增加到20 A/g时,其比容保持率达76.6%,且在4 A/g的电流密度下经1000次循环充放电后,比容保持率达93.9%。  相似文献   

18.
CeO2,La2O3,and CeO2-Y2O3 oxides were coated on the surface of spherical granular AI2O3(3-5 mm)through impregnation method,and proved as better supports of Pd and Pt catalysts.The influences of rare earth metal doping on the adsorption rates of Pd and Pt ions,as well as the catalytic performance,were investigated.Results show that the H2PtCl6·6H2O adsorption rates of the Al  相似文献   

19.
A pack diffusion process has been developed which permits the introduction of nearly 6 wt pct Al into solid solution in the near surface region of TDNiCr (Ni-20 wt pct Cr-2 vol pct ThO2) and Ni-20Cr. Alumina scales, adherent under cyclic heating and cooling conditions, were produced on TDNiCr-5.86A1 upon exposure to an environment of 1.33 × 103N/m2 (10 torr) or 1.01 × 105N/m2 (760 torr) air at temperatures of 1093° and 1204°C. While the same oxidation kinetics were observed in isothermal tests for Ni-14.6Cr-5.86Al as were obtained for the TDNiCr-5.86A1, the dispersion strengthened alloy exhibited superior oxide scale adhesion during cyclic testing. At 1204°C continuous weight gains were observed under all test conditions for TDNiCr-5.86A1, in contrast to the weight loss with time which occurred several hours after exposure of TDNiCr to an oxidizing environment. TDNiCr with an initial aluminum surface concentration of 4.95 wt pct has nearly comparable oxidation resistance to the TDNiCr-5.86Al alloy. Specimens with 4.3 wt pct Al at the surface have inadequate aluminum to form Al2O3 scales, and weight losses are observed after 40 h upon exposure of these specimens to 1.01 × 105N/m2 (760 torr) air at 1204°C.  相似文献   

20.
Small angle X-ray scattering has been used to measure the coarsening kinetics of metastable Al3Li precipitates in a dilute AlLi binary alloy. The results are compared to previous transmission electron microscopy studies of similar alloys. Lifschitz-Slyozov-Wagner coarsening theory was invoked as a means of obtaining the α/Al3Li interfacial energy. However, corrections accounting for effects due to finite volume fractions and limited solubility of Li in the precipitate phase are included. The surface energy was found to be ∼0.005J/m2, significantly less than previously reported. A possible explanation for the discrepancy is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号