首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K2Ba(MoO4)2:Eu3+ phosphors were synthesized by solid-state reaction. The emission and excitation spectra of K2 Ba(MoO4)2:Eu3+ phosphors exhibited that the phosphors could be effectively excited by near ultraviolet (394 nm) and blue (465 nm) light, and emitted red light at 616 nm. The influence of Eu3+concentration, sintering temperature and charge compensators (K+, Na+ or Li+ ) on the emission intensity were investigated. The results indicated that concentration quenching of Eu3+ was not observed within 30mol.% Eu 3+, 600 oC was a suitable sintering temperature for preparation of K2 Ba(MoO4)2:Eu3+phosphors, and K+ ions gave the best improvement to enhance the emission intensity. The CIE chromaticity coordinates of K2 Ba(MoO4)2:0.05Eu3+phosphor were calculated to be (0.68, 0.32), and color purity was 97.4%.  相似文献   

2.
Eu3+ activated Ca4Yt(SiO4)60 phosphors were prepared by combustion synthesis method, and their morphologies and lu- minescent properties were investigated. Field scanning electron microscopy (FSEM) confirmed that the crystallite sizes of nanoparti- cles with narrow diameter ranging from 30 to 60 rim. The excitation spectra of CaaY6(SiO4)60:Etl3+ showed that there existed two strong excitation bands at around 399 nm (TFo----~SL6) and 469 nm (TF0---*SD2), which were consistent with the output wavelengths of near-UV and blue LEDs, respectively. The emission spectra of Ca4Y6(SiO4)60:Eu3+ were dominant by a red peak located at 614 nm due to the 5Do→7TF2 transition of Eu3+. With the increase of Eu3+concentration, the luminescence intensity of the red phosphor reached maximum and then decreased. The optimum concentration for Eug+in Ca4Y6(SiO4)60 was 21 mol.%.  相似文献   

3.
Y2O2S:Sm^3+, Mg^2+, Ti^4+ phosphor was synthesized by co-precipitation method. The crystalline structure of all synthesized phosphors was investigated by XRD. The result showed that all synthesized phosphors had a hexagonal crystal structure, which was the same as Y2O2S. The emission spectrum and excitation spectrum were measured, and the effect of Sm^3 + molar ratio on the spectra was discussed. The emission spectra of the phosphors showed three emission peaks due to typical transitions of Sm^3 + (4G5/2→6HJ ,J = 5/2, 7/2, 9/2), and the emission peaks at 606 nm was stronger than others. With the increase of Sm^3 + molar ratio, the emission intensity was strengthened. The excitation peaks were ascribed to the representative energy transition 4f→4f of Ti^4+ phosphor prepared by co-precipitation method was Sm^3+ ions. The results indicated that the Y2O2S : Sm^3+ , Mg^2+ , an efficient long afterglow phosphor.  相似文献   

4.
A series of red phosphors Ca10Li (PO4)7:Eu3+ were synthesized by high temperature solid-state reaction method. Their luminescence properties were characterized by means of photoluminescence excitation and emission spectra,CIE chromaticity and quantum efficiency. Results indicated that the phosphors could be effectively excited by the near ultraviolet (NUV) light (393 nm). The main emission peaks of the phosphor were ascribed to the transition 5D0-7F2 (613 and 617 nm) of Eu3+ ion when samples were excited by...  相似文献   

5.
This study fully investigated the vacuum ultraviolet excitation spectra of pure and rare-earth(RE=Eu, Tb and Dy)-doped A2Zr(PO4)2(A=Li, Na and K) phosphors. The synthesized Na and Li compounds were characterized by XRD showing two new types of phases after indexation. Although these three pure compounds had different crystal structures, they exhibited similar luminescence properties. For Eu3+-activated samples, the broad excitation band centered at 217 nm could be attributed to the CT transition between O2–(2p6) and Eu3+ ions. For Tb3+-doped samples, two groups of f-d transitions were observed, where a strong broad band at 221 nm was due to the spin-allowed f-d transition. Energy transfer from O2– to Dy3+was not observed in Dy3+-doped phosphors, probably because it overlapped considerably with the CT transition from O2– to Zr4+ at 187 nm.  相似文献   

6.
The Ba3Y2(BO3)4:Eu^3+ phosphor was synthesized using a high temperature solid-state reaction method and the luminescent characteristics were investigated. The emission spectrum exhibited one strong red emission at 613 nm, corresponding to the electric dipole 5D0-TF2 transition of Eu^3+, under 365 nm excitation. The excitation spectrum of 613 nm indicated that the Ba3Y2(BO3)n:Eu^3+ phosphor was effectively excited by ultraviolet (UV) (254, 365 and 400 nm) and blue (470 nm) light. The effect of Eu^3+ concentration on the 613 nm emission of the Ba3Y2(BO3)n:Eu^3+ phosphor was measured. The results showed that the emission intensity increased with increasing Eu^3+ concentration, and then decreased. The CIE color coordinates of Ba3Y2(BO3)4:Eu^3+ phosphor were x=0.641 and y=0.359 at 15 mol.% Eu^3+.  相似文献   

7.
Blue emitting rare earth(Eu2+,Ce3+) doped BaAl2Si2O8 phosphors were synthesized by combustion methods at 600 oC. BaAl2Si2O8: Eu2+ phosphor showed isolated broad blue emission band at 455 nm, when it was excited with the wavelength of 329 nm. Whereas BaAl2Si2O8:Ce3+ phosphor exhibited blue emission band at 442 nm, under 303 nm excitation wavelength. These observed emission bands of Eu2+ and Ce3+ ions corresponded to 5d-4f allowed transitions. The position of emission band was calculated by using the equationE=Q[1-〔V/4〕^1/V)]× 10 (nEar/80)Also the spin orbit splitting difference in the ground state levels of Ce3+ ion was studied by Gaussian curve fitting. Broad absorption and emission bands in blue regions made prepared phosphors a promising blue host for the white-LEDs.  相似文献   

8.
Eu3+-doped (Y,Gd)NbO4 phosphor was synthesized by solid-state reaction for possible application in cold cathode fluorescent lamps. A broad absorption band with peak maximum at 272 nm was observed which was due to the charge transfer between Eu3+ ions and neighboring oxygen anions. A deep red emission at the peak wavelength of 612 nm was observed which could be attributed to the 5D0→7F2 transition in Eu3+ ions. The highest luminance for Y1-x-yGdyNbO4:Eux3+ under 254 nm excitation was achieved at Eu3+ concentration of 18 mol.% (x=0.18) and Gd3+ concentration of 8.2 mol.% (y=0.082). The luminance of Y0.738Gd0.082NbO4:Eu3+0.18 was higher than that of a typical commercial phosphor Y2O3:Eu3+ and the CIE chromaticity coordinate was (0.6490, 0.3506), which was deeper than that of Y2O3:Eu3+. The particle size of the synthesized phosphors was controlled by the NaCl flux and particle size as high as 8 μm with uniform size distribution of particles was obtained.  相似文献   

9.
The Bi3+ doped molybdate-based red-emitting phosphors, LiEu1-xBix(MoO4)2, were successfully synthesized with a sol-gel method. The prepared LiEu1-xBix(MoO4)2 phosphors exhibited pure and intense red emission at 613 nm under the excitation of near-UV 394 nm. It was discussed in detail that the influence of the synthesis conditions such as the doping concentration of Bi3+, the dose of citric acid, pH of the precursor solution and the sintering temperature on the emission intensity of the phosphors. According to the results, the optimal condition was obtained: the doping concentration of Bi3+ was 15 mol.%, molar ratio of citric acid to metal ions was 1.5:1, pH of the precursor solution was 1.0 and the sintering temperature was 800 ?C. The X-ray diffraction (XRD) patterns of the LiEu0.85Bi0.15(MoO4)2 phosphor prepared under the optimal condition indicated that the phosphor was single phase with tetragonal scheelite structure. The Commission Internationale de l’E-clairage (CIE) chromaticity coordinates of LiEu0.85Bi0.15(MoO4)2 were (x=0.655, y=0.345), which were closer to the national television stan-dard committee (NTSC) standard values (x=0.670, y=0.330) than that of a commercial red phosphor of Y2O2S:Eu3+(x=0.630, y=0.350). This LiEu0.85Bi0.15(MoO4)2 red phosphor is a promising candidate for the fabrication of white light-emitting diode (W-LED) with near-UV chips.  相似文献   

10.
A series of blue long afterglow mixed halide-phosphate phosphors Sr5 (PO4)3 FxCll-x:Eu2+,Gd3+ were synthesized in air by traditional solid-state reaction routte. The crystal structures, photoluminescence, thermolurninescenee properties and afterglow proper- ties of the phosphors were characterized systematically using X-ray diffraction (XRD), luminescence spectrophotometer, microcom- puter thermoluminescence dosimeter and single photon counter, respectively. Under 280 nm excitation, the broadband emissions of Eu2+ ions were observed at 445 nm (blue) due to the 4f7→4f65d transition. It was demonstrated that there existed the self-reduction of the Eu3+ to Eu2+ ions in this special halide-phosphate matrix in air condition. The addition of Gd3+ ions obviously enhanced the after- glow properties of the single doped Eu2+ ions in the halide-phosphate phosphors. And the content of the fluoride anions also had sig- nificant influence on the afterglow properties. All results indicated that Srs (PO4)3 FxCI1-x:Eu2+,Gd3+ might be potential phosphors for long lasting phosphorescence (LLP) materials.  相似文献   

11.
Rare earth Sm3+, Pr3+doped NaSr2(NbO3)5 red phosphors were successfully synthesized. X-ray diffraction analysis indi-cated that all the samples were single phased. The luminescence property was investigated in detail by diffuse-reflectance spectra and photoluminescence spectra measurement. Both NaSr2(NbO3)5:Sm3+and NaSr2(NbO3)5:Pr3+phosphors showed strong absorption in near ultraviolet region, which was suitable for application in LEDs. When excited by UV light, they both emitted bright red emission with CIE chromaticity coordinates (0.603, 0.397) and (0.669, 0.330), respectively. The optimal doping concentration of Sm3+doped NaSr2(NbO3)5 was measured to be 0.04 and that for Pr3+doped NaSr2(NbO3)5 was 0.01. The integral emission intensity was also measured and compared with the commercial red phosphor Y2O3:Eu3+. The results indicated that NaSr2(NbO3)5:RE3+(RE=Sm, Pr) have potential to serve as a red phosphor for UV pumped white LEDs.  相似文献   

12.
The cerium (Ce3+) doped yttrium aluminium borate (YAB) phosphor was synthesized by modified solid state reaction. The phosphor's phase purity and its emission properties were studied using powder X-ray diffraction pattern and photoluminescence spectroscopy. The synthesized YAB had rhomobohedral crystal structure. The phosphor had two different excitation and emission spectra. By 325 nm excitation, the phosphor had emission at 373 nm and with 363 nm excitation; the phosphor gave violet-blue emission at 418 nm. The UV emission of the phosphor originated due to Ce3+ ions at the yttrium site and violet-blue emission owing to Ce3+ ions at non-regular sites viz., A13+ and interstitial sites. The emission intensity of the phosphor was enhanced when monovalent ions (K+, Na+, and F) were added as co-dopants. The crucial role of ionic radii of monovalent co-dopants on the emission enhancement of the YAB:Ce3+ phosphor was reported. Thermogravimetric study showed that the YAB possessed high thermal stability at up to 900 ℃.  相似文献   

13.
Eu2+-doped K2 Mg Si3O8 phosphors were synthesized by conventional solid-state reaction method. The phase formation of as-prepared samples was characterized by X-ray powder diffraction. The luminescence properties were investigated by the photoluminescence excitation and emission spectra, decay curve and CIE coordinates. The phosphor showed bluish-green emission centered at 460 nm under the excitation of UV and near UV light with the wavelength range of 250–430 nm. Two Eu2+ emission centers existed in the K2 Mg Si3O8:Eu2+ phosphor according to the luminescence spectra and the decay curves. The critical quenching concentration of Eu2+ doping was determined to be 3.0 mol.% and the concentration quenching mechanism was dipole-dipole interactions between Eu2+ ions. These results suggested that K2 Mg Si3O8:Eu2+ was a potential bluish-green phosphor candidate for white UV-LED.  相似文献   

14.
A novel red emitting phosphor Gd2(MoO4)3:Eu^3+ was prepared by solid reaction, using Gd2O3, Eu2O3 and WO3 as starting matedals and NH4F as flux. The effects of flux content and Eu^3+ concentration on the crystal structure, morphology and luminescent properties were investigated using XRD, SEM and fluorescent spectrum measurement. The XRD patterns showed that the resultants had the monoclinic structure. With the increase in flux amount, their crystallization significantly improved. The SEM images indicated that the mean size of the phosphor particles was around 2 μm, and agglomeration of the phosphor particles appeared while introducing higher flux amount. The excitation spectra exhibited more intense f-f transitions originating from ground state 7^F0 to upper states 5^L6 and 5^D2 than the charge transfer band. The concentration quenching of Eu^3+ emission indicated that energy transfer from Eu^3+ to molybdate host existed even at lower Eu^3+ concentration.  相似文献   

15.
YAl3 (BO3)4: Eu^3+ phosphors were prepared by the conventional solid state reaction. The phase structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Doping YAl3(BO3)4: Eu^3+ phosphors with concentration of Eu^3+ ions of 0, 2, 5, 8 and 10 mol% were studied and their luminescent properties at room temperature were discussed. The excitation spectrum of Y0.95Eu0.05Al3(BO3)4 was composed of a broad band centered at about 252 nm and a group of lines in the longer wavelength region. In the emission spectra, the peak wavelength was about 614 nm under a 252 nm UV excitation. The optimal doping concentration of Eu^3+ ions in YAl3(BO3)4: Eu^3+ phosphors was 8 mol%.  相似文献   

16.
The (Ba1- x, Srx ) 2 SiO4 : EU^2+ green-emitting phosphors were synthesized by conventional solid-state reaction in a CO-reductive atmosphere, and their luminescent properties were investigated. The XRD data show that the Ba/Sr ratio not only affects the lattice parameters, but also influences the emission peak. The excitation spectra indicate that this phosphor can be effectively excited by UV light from 370 to 470 nm. The emission band is due to the 4f^65d^1→4f^7 transition of the Eu^2+ ion. With an increase in x, the emission band shifts to longer wavelength and the reason was discussed. The emission spectra exhibit a satisfactory green performance under different excitation wavelength(380,398,412,420,460 nm). (Ba1- x, Srx ) 2 SiO4 : EU^2+ is a promising phosphor for green white-lighting-emission diode by ultraviolet chip.  相似文献   

17.
Luminescence enhancement of BaMgSiO4:Eu^2+ by adding borate as flux   总被引:1,自引:0,他引:1  
The luminescence of EU^2+ in BaMgSiO4 with BaB2O4 as flux was studied. The emission spectrum of the phosphor consisted of two bands, peaking at about 398 nm and 515 nm, which were attributed to the emissions from different Eu^2+ sites in the lattice. When the BaB2O4 flux was applied, the intensity of the 398 nm emission was not clearly affected, but the intensity of the 515 nm emission was enhanced by about ten times. Gaussian fitting showed that the emission band at around 515 nm could actually be resolved into two bands with peak wavelengths of 499 nm and 521 nm, respectively. The assignments of the emission bands to the cation sites were carried out according to the values of bond valence. The overlapping of the 398 nm emission band on the excitation band of 515 nm emission implied that energy transfer could occur from the luminescent center related to the 398 nm emission to the center related to the 515 nm emission, and the energy transfer process remarkably enhanced the intensity of the 515 nm emission band. The phosphor had strong excitation at around 350-400 nm and emitted a bright green luminescence. Thus it could have applications as a green component in solid-state lighting devices assembled by near-UV Light Emitting Diodes (LED) combined with tricolor phosphors.  相似文献   

18.
Praseodymium doped lithium yttrium molybdate Li Y1-8x Pr x(Mo O4)2(x=0.005–0.025) phosphors were successfully prepared by the hydrothermal method. The phase, morphology, and luminescent property of the prepared phosphors were investigated by X-ray diffraction and scanning electron microscopy. The results indicated that doping of Pr3+ ions did not change the main phase of the phosphors. The samples emitted red luminescence upon excitation at 453 nm and the strongest emission peak corresponding to the characteristic transition of the Pr3+ ion: 3P0→3F2 was observed at 657 nm. Li Y(Mo O4)2:Pr3+ red phosphors could be effectively excited by blue light emitting-diodes to emit red light; thus, acting as potential candidates for compensating the red light deficiency of cerium doped yttrium aluminum garnet yellow phosphor.  相似文献   

19.
Green-emitting Sr2LiSiO4F:Eu2+ and blue-emitting Sr2MgSi2O7:Eu2+ phosphors were synthesized by the conventional high temperature solid-state route,respectively.Their structures and photoluminescenee properties were comparatively investigated.It was found that the mixture phases of Sr2MgSi2O7 and SrF2 were obtained when a part of Sr2+ in Sr2LiSiO4F was replaced by some amount of Mg2+ in order to design the possible SrMgLiSiO4F:Eu2+ phosphor.Based on the photoluminescence analysis,Sr2LiSiO4F:Eu2+ phosphor exhibited a green broad emission band of main peak at 513 nm under the excitation of 365 nm,while the Sr2MgSi2O7:Eu2+ and SrMgLiSiO4F:Eu2+ phosphor showed blue emission centered at 467 nm.The temperature dependent photoluminescence properties and room temperature decay time for the three kinds of phosphors were also discussed in this paper.  相似文献   

20.
A novel red phosphor Ca2GeO4:Eu3+ was prepared by the traditional solid state reaction. X-ray powder diffraction (XRD) analysis suggested that there was no impurity phase. The study on the diffusion reflection spectra of the undoped and Eu3+ doped Ca2GeO4 phosphors revealed an absorption band superposed of that of the host material and the Eu3+ ions. And the excitation spectrum presented a dominating broad band at 250–300 nm which was attributed to both the host material absorption and the charge transfer band (CTB) of the Eu3+ ions. The investigation on the excitation and diffusion spectra showed that there was an effective energy transfer from the host material to the Eu3+ ions. This was favorable to the red emission of the phosphor. Photoluminescence measurements indicated that the phosphor presents bright red emission at 611 nm under UV excitation. In addition, the Al3+ or Li+ codoping enhanced the red emission from Ca2GeO4:Eu3+ by about 3 and 2 times respectively under UV excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号