首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
通过超音速火焰喷涂技术在Q235钢基体表面喷涂TiB2-40Ni涂层,并对涂层的组织结构、硬度值和耐磨性进行了研究。结果表明,涂层组织致密,孔隙率为0.474%,硬度值为408±40.5 HV0.3。涂层主要由TiB2和Ni构成。经磨粒磨损试验,TiB2-40Ni涂层的耐磨损性能良好,磨损量为2.21±0.11 mg。  相似文献   

2.
采用超音速等离子喷涂技术(SAPS)在Q235钢基体表面制备了ZrO2涂层。利用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)分别对ZrO2涂层微观形貌、物相组成、元素分布进行了检测和分析,同时利用维氏硬度计对ZrO2涂层硬度进行了测量,分别得出了涂层、涂层与基体连接处、基体的硬度值。结果表明:利用超音速等离子喷涂技术所制备的ZrO2涂层表面存在大量颗粒凸起和孔洞。涂层截面存在形状为“马蹄形”、“弯月形”、“椭球形”以及“不规则多边形”的孔洞和横向裂纹缺陷,孔隙率为13%。在高温作用下,涂层中Zr元素发生扩散,由涂层顶部至底部Zr元素含量上升,且基体表面出现少量Zr元素。涂层材料在喷涂过程中发生相变,由单斜相转为四方相。涂层、涂层与基体连接处、基体显微硬度分别为740.51、205.79、189.33 HV0.2,涂层与基体连接处相比于基体材料表面的显微硬度提高。  相似文献   

3.
采用离子喷涂和超音速火焰喷涂技术分别制备了NiCoCrAlY/Al2O3耐磨复合涂层,通过SEM、显微硬度计和万能材料测试机研究了粉体和涂层的显微结构、显微硬度和结合强度。结果表明,Al2O3颗粒表面包覆着一层致密的NiCoCrAlY合金,涂层与基体结合良好,超音速火焰喷涂涂层的孔隙率仅为等离子喷涂涂层的1/7。超音速火焰喷涂涂层的显微硬度和结合强度均高于等离子喷涂涂层。两种方法制备的涂层的破坏属脆性断裂机理。  相似文献   

4.
目的 研究等离子喷涂与超音速火焰喷涂NiCr-Cr3C2涂层的组织、力学性能和摩擦磨损性能。方法 采用等离子喷涂与超音速火焰喷涂工艺制备NiCr-Cr3C2涂层,并采用X射线衍射仪(XRD)、扫描电镜(SEM)、万能试验机、显微硬度计和高速往复摩擦磨损试验机,系统地分析了两种工艺所得涂层的物相、组织、结合强度、硬度及摩擦磨损性能。结果 两种工艺制备的NiCr-Cr3C2涂层与基体界面结合效果良好。等离子喷涂NiCr-Cr3C2涂层为层片状组织,层间可见微裂纹,孔隙率较高;超音速火焰喷涂NiCr-Cr3C2涂层组织均匀,无明显微裂纹,可见少量微小孔隙。物相分析表明,等离子喷涂涂层由NiCr、Cr3C2和Cr7C3相组成,而超音速火焰喷涂涂层由NiCr和Cr3C2相组成。超音速火焰喷涂NiCr-Cr3C2涂层的耐磨性优于等离子喷涂涂层,等离子喷涂涂层和超音速火焰喷涂涂层的稳态摩擦系数分别为0.4和0.6。随载荷升高,两种工艺制备的NiCr-Cr3C2涂层摩擦系数均显著下降。磨损后,等离子喷涂NiCr-Cr3C2涂层表面具有明显的凹痕和剥落,而超音速火焰喷涂NiCr-Cr3C2涂层磨痕表面较光滑,未见明显剥落。两种工艺制备的涂层磨损机制均为磨粒磨损和疲劳磨损。结论 超音速火焰喷涂NiCr-Cr3C2涂层较等离子喷涂涂层组织更为致密,具有更为优良的综合力学性能和耐磨性,等离子喷涂制备的NiCr-Cr3C2涂层的减摩性较好。  相似文献   

5.
等离子喷涂法制备Ti/Ti4O7+TiB2/PbO2阳极材料的性能研究   总被引:1,自引:0,他引:1  
用等离子喷涂法在钛基体上喷涂一层Ti4O7和TiB2的混合物作为中间过渡层,以提高钛基体的耐蚀性能、改善钛基体的导电性;然后在Ti/Ti4O7+TiB2中间过渡层上电镀PbO2活性层,从而制备出一种新型的"三明治"结构的钛阳极。实验结果表明:喷涂后的钛基体主要由TiO2、Ti4O7和TiB2三种物相组成;TiB2的加入能够显著提高Ti/Ti4O7的导电性;当TiB2含量为15%左右时,该电极材料的电化学性能达到最佳。  相似文献   

6.
反应等离子喷涂(RPS)技术被广泛用于制备不同使用需求的高性能涂层材料。基于经典的铝热反应原理,采用反应等离子喷涂技术分别在近常压和低压环境下制备了Al-Fe2O3涂层,通过XRD、SEM和EDS等分析方法对所制备涂层的相组成和显微结构进行了表征。阐明了Al和Fe2O3在加热和反应等离子喷涂过程中的反应机理。DTA分析结果表明,氩气氛下长时间热处理产物主要为Fe、Al2O3和FeAl相。然而,在等离子喷涂过程中,低氧分压环境导致中间产物FeAl2O4铁尖晶石相的生成,由于近常压等离子喷涂过程的冷却速度极快,该相可以保留在最终涂层结构中。而低压反应等离子喷涂等离子体射流飞行距离长,还原性气氛和较长的反应时间将其进一步还原为FeAl相。  相似文献   

7.
采用等离子喷涂技术在不同的喷涂工艺条件下制备WC-Ni涂层。采用X射线衍射(XRD)和扫描电镜(SEM)表征和观察涂层的相结构和显微组织,同时运用压痕法对涂层的显微硬度、弹性模量和断裂韧性进行测试。结果表明,等离子喷涂工艺参数对涂层的组织结构和相结构有显著影响,等离子喷涂功率增加,粒子的熔化程度增加,适当的喷涂距离下沉积形成的涂层致密;等离子功率增加,喷涂过程中会产生WC粒子的失碳,相对于W_2C相,WC_(1-x)相的增加可以同时提高涂层的显微硬度和断裂韧性;与涂层的相组成相比,致密的组织结构对涂层显微硬度、弹性模量和断裂韧性的综合性能的提高更显著。  相似文献   

8.
目的 探究掺杂不同质量分数Y2O3对Al2O3-Y2O3复合涂层微观结构及其力学性能的影响。方法 采用大气等离子喷涂制备Al2O3涂层,以及Y2O3质量分数分别为10%、20%、30%、40%的Al2O3-Y2O3复合涂层。利用SEM、EDS对粉末以及不同涂层的形貌、组织结构、元素分布进行分析。使用XRD表征粉末和涂层的物相。使用显微硬度仪、纳米压痕测试仪和电子万能试验机对涂层的显微硬度、弹性模量以及断裂韧性等力学性能进行测试分析。结果 Al2O3喷涂粉末的物相由α-Al2O3组成,而喷涂得到的Al2O3涂层则由α-Al2O  相似文献   

9.
采用激光熔化沉积在TC4合金表面制备出不同TiB2含量(0、10%、20%、30%,质量分数)的TiAl基合金涂层,利用XRD、OM、SEM、显微硬度计、压痕法(断裂韧性)、磨损试验机以及激光共聚焦显微镜等,系统研究了TiB2含量对涂层微观组织与力学性能的影响。结果表明,涂层组织由底部沿厚度方向依次为平面晶、柱状晶和等轴晶,随着TiB2含量增加,柱状晶高度逐渐降低。TiB2/TiAl复合涂层由Ti Al合金基体相(γ+α2)以及TiB2增强相组成,直接添加的TiB2颗粒大多没有熔化,但直接添加的TiB2颗粒外层与Ti Al合金熔体发生溶解反应后原位析出初生TiB2和次生TiB2,初生TiB2呈块状,次生TiB2呈短棒状和条带状。随着TiB2含量由0增加至10%,涂层基体组织明显细化,但继续增加TiB2含量...  相似文献   

10.
通过反应等离子喷涂技术制备含Ti含量不同的金属-陶瓷纳米复合涂层。并利用XRD和SEM对该涂层的物相组成、结构及形貌进行研究。结果显示,该涂层中形成了FeAl2O4、FexAly、TiO2、Fe相以及铁钛尖晶石相。对其力学性能的研究表明,随着Ti含量的增加显微硬度逐渐降低,磨损性能逐渐升高,当Ti含量为10%时,复合涂层的综合力学性能最优。  相似文献   

11.
This work is aimed at developing a route for the deposition of TiB2-Ni cermet coating. The feedstock was firstly prepared by agglomeration and sintering, which was subsequently subjected to plasma spraying. The microstructures and the phase composition of the powder, as well as the sprayed coating were analyzed by scanning electron microscopy and x-ray diffraction. The microhardness (Hv) and the fracture toughness (K IC) of the coating were evaluated. A sliding wear test was also performed on the sprayed coating by SRV® tribo-tester using GCr15 steel as a counterpart. The results showed that the phase of sprayed TiB2-Ni coatings consisted of TiB2, Ni, and Ni20Ti3B6, whose amount varied depending on the powder calcination temperature and the TiB2 content in the powder. Both the hardness and the fracture toughness of the coating were also changed with different powders. The Ni20Ti3B6 brittle phase was the main factor affecting the fracture toughness of coating, which also had detrimental effect on the sliding wear performance. The 60TiB2-40Ni coating deposited from the powder calcined at 1250 °C had better sliding wear performance as it presented more dense structure, higher TiB2 content and less retained Ni20Ti3B6 phase in the coating.  相似文献   

12.
The composition WC-(W,Cr)2C-Ni (commercial designations WC-‘CrC’-Ni, WC-Cr3C2-Ni and WC-NiCr) is unique among the WC-based materials used for the preparation of thermally sprayed hardmetal coatings. These coatings show a significantly higher oxidation resistance and high-temperature sliding wear resistance than WC-Co and WC-CoCr coatings do. Unlike WC-Co and Cr3C2-NiCr, WC-(W,Cr)2C-Ni is not a simple binary hard phase-binder metal composite as it is composed of two hard phases: WC and (W,Cr)2C. Surprisingly this composition has been poorly investigated in the past.In this paper coating microstructures and properties obtained from five commercial feedstock powders of different origins using two different liquid-fuelled high velocity oxy-fuel (HVOF) systems (K2 and JP-5000) were investigated. Additional experiments were performed with one powder using atmospheric and vacuum plasma spraying (APS and VPS, respectively). The microstructures and phase compositions of the powders and the coatings were studied. Focus was on the appearance, composition and distribution of the (W,Cr)2C phase which might form or might change its Cr/W ratio during the spray process. The composition of the (W,Cr)2C phase was estimated from the lattice parameters. Hardness HV0.3 was measured for all coatings. The density, Young's modulus and abrasion wear resistance of HVOF-sprayed coatings were studied.  相似文献   

13.
The fracture toughness of plasma-sprayed Al2O3 coatings in terms of critical strain energy release rate G Ic was investigated using a tapered double cantilever beam (TDCB) approach. This approach makes the fracture toughness be measured only using the critical fracture load disregarding crack length during test. The Al2O3 coatings were deposited under different spray distances and plasma powers to clarify the effect of spray parameters on the G Ic of the coatings. The fracture surfaces were examined using scanning electron microscope. On the basis of an idealized layer microstructure model for thermal sprayed coatings, the theoretical relationship between the cohesive fracture toughness and microstructure is proposed. The correlation between the calculated fracture toughness and observed value is examined. It was found that the fracture toughness of plasma sprayed Al2O3 coatings is not significantly influenced by spray distance up to 110 mm, and further increase in spray distance to 130 mm resulted in large decrease in the fracture toughness of the coatings. The G Ic value predicted based on the proposed model using lamellar interface mean bonding ratio and the effective surface energy of bulk ceramics agreed well with the observed G Ic data. Such agreement evidently shows that the fracture toughness of thermally sprayed ceramic coatings at the direction along coating surface is determined by lamellar interface bonding.  相似文献   

14.
The detonation spraying is one of the most promising thermal spray variants for depositing wear and corrosion resistant coatings. The ceramic (Al2O3), metallic (Ni-20 wt%Cr) , and cermets (WC-12 wt%Co) powders that are commercially available were separated into coarser and finer size ranges with relatively narrow size distribution by employing centrifugal air classifier. The coatings were deposited using detonation spray technique. The effect of particle size and its distribution on the coating properties were examined. The surface roughness and porosity increased with increasing powder particle size for all the coatings consistently. The feedstock size was also found to influence the phase composition of Al2O3 and WC-Co coatings; however does not influence the phase composition of Ni-Cr coatings. The associated phase change and %porosity of the coatings imparted considerable variation in the coating hardness, fracture toughness, and wear properties. The fine and narrow size range WC-Co coating exhibited superior wear resistance. The coarse and narrow size distribution Al2O3 coating exhibited better performance under abrasion and sliding wear modes however under erosion wear mode the as-received Al2O3 coating exhibited better performance. In the case of metallic (Ni-Cr) coatings, the coatings deposited using coarser powder exhibited marginally lower-wear rate under abrasion and sliding wear modes. However, under erosion wear mode, the coating deposited using finer particle size exhibited considerably lower-wear rate.  相似文献   

15.
The structure, hardness, and shear adhesion strength have been investigated for Cr3C2-NiCr cermet coatings sprayed onto a mild steel substrate by 200 kW high power plasma spraying (HPS) and high velocity oxy-fuel (HVOF) processes. Amorphous and supersaturated nickel phases form in both as-sprayed coatings. The hardness of the HVOF coating is higher than that of the HPS coating, because the HVOF coating contains more nonmelted Cr3C2 carbide particles. On heat treating at 873 K, the amorphous phase decomposes and the supersaturated nickel phase precipitates Cr3C2 carbides so that the hardness increases in the HPS coating. The hardness measured under a great load exhibits lower values compared with that measured with a small load because of cracks generated from the indentation. The ratio of the hardnesses measured with different loads can be regarded as an index indicating the coating ductility. The ductility of the HVOF coating is higher than that of the HPS coating. Adhesion strength of the HVOF coating was high compared with the HPS coating. The adhesion of the coatings is enhanced by heat treating at 1073 K, and that of the HVOF coating is over 350 MPa.  相似文献   

16.
Carbide based thermal spray coatings are routinely applied to mitigate erosion under industrial conditions. However, the mechanism of erosion response under aggressive high velocity impact conditions remains unclear. In this work Cr3C2-25%NiCr thermal spray coatings were eroded at an impact velocity of 150 m/s by 20-25 µm alumina grit. Coatings were deposited by High Velocity Air Fuel (HVAF) and High Velocity Oxygen Fuel (HVOF) thermal spray techniques to generate a range of coating quality spanning that applied industrially. In Part 1 of this two-part series, the mechanism of erosion as a function of coating composition and microstructure variation is discussed. The HVOF coating underwent significant in-flight dissolution of the carbide phase. The erosion response of the supersaturated NiCr matrix was characterised by brittle cracking and fracture. The HVAF coating retained a high carbide content with minimal phase dissolution. However, the rapid solidification of the matrix material made the coating prone to brittle interphase cracking during impact. On a larger scale, splat based erosion mechanisms played a significant role, especially in the HVOF coating. The mechanisms of impact response of these coatings were dependent upon the depth of erodent penetration and could not, therefore, be extrapolated from erosion testing at lower velocities.  相似文献   

17.
Nozzle geometry, which influences combustion gas dynamics and, therefore, sprayed particle behavior, is one of the most important parameters in the high-velocity oxygen-fuel (HVOF) thermal spray process. The nozzle geometry is also important in the cold spray method. The gas flows in the entrance convergent section of the nozzle exhibit a relatively higher temperature and are subsonic; thus, this region is most suitable for heating spray particles. In this study, numerical simulation and experiments investigated the effect of the entrance geometry of the gun nozzle on the HVOF process. The process changes inside the nozzle, as obtained by numerical simulation studies, were related to the coating properties. An Al2O3-40 mass% TiO2 powder was used for the experimental studies. The change in entrance convergent section length (rather than barrel part length or total length) of the gun nozzle had a significant effect on the deposition efficiency, microstructure, and hardness. The deposition efficiency and hardness increased as this geometry increased. On the other hand, the calculated and measured particle velocity showed a slight decrease. This effect on the HVOF process will also be applied to the nozzle design for the cold spray method.  相似文献   

18.
In-situ plasma spraying (IPS) is a promising process to fabricate composite coatings with in-situ formed thermodynamically stable phases. In the present study, mechanically alloyed Al-12Si, B2O3 and TiO2 powder was deposited onto an aluminum substrate using atmospheric plasma spraying (APS). It has been observed that, during the coating process, TiB2 and Al2O3 are in-situ formed through the reaction between starting powders and finely dispersed in hypereutectic Al-Si matrix alloy. Also, obtained results demonstrate that in-situ reaction intensity strongly depends on spray conditions.  相似文献   

19.
Nanostructured titania (TiO2) coatings were produced by high-velocity oxyfuel (HVOF) spraying. They were engineered as a possible candidate to replace hydroxyapatite (HA) coatings produced by thermal spray on implants. The HVOF sprayed nanostructured titania coatings exhibited mechanical properties, such as hardness and bond strength, much superior to those of HA thermal spray coatings. In addition to these characteristics, the surface of the nanostructured coatings exhibited regions with nanotextured features originating from the semimolten nanostructured feedstock particles. It is hypothesized that these regions may enhance osteoblast adhesion on the coating by creating a better interaction with adhesion proteins, such as fibronectin, which exhibit dimensions in the order of nanometers. Preliminary osteoblast cell culture demonstrated that this type of HVOF sprayed nanostructured titania coating supported osteoblast cell growth and did not negatively affect cell viability. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

20.
A relatively new generation of cermet materials, based on TiB2-Ni, has been investigated. These borides currently are being examined for industrial applications with the aim of exploiting their excellent wear resistance. Optimization of the liquid-phase sintering process for a TilB2-Ni composition was studied. The mechanical properties of cermet materials prepared using vacuum and pressure sintering techniques were determined. Criteria for optimal sintering conditions were established according to hardness, strength, and fracture toughness properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号