首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用三聚氰胺聚磷酸盐(MPP)和次磷酸铝(PAH)为阻燃剂,马来酸酐接枝聚乙烯(PE-g-MAH)为相容剂,通过熔融共混,制备阻燃木粉(WF)-高密度聚乙烯(HDPE)复合材料(HDPE/WF)。探索了三聚氰胺聚磷酸盐(MPP)与次磷酸铝(PAH)组成的二元体系中MPP与PAH的最佳质量比,采用极限氧指数(LOI)和垂直燃烧(UL-94)研究了阻燃HDPE/WF的阻燃性能,采用热重分析(TGA)研究了阻燃HDPE/WF的热分解过程,用扫描电镜(SEM)观察了阻燃HDPE/WF燃烧炭层的形貌。结果表明:当MPP和PAH的质量比为3∶2时,阻燃HDPE/WF的阻燃效果达到最好,LOI值为29.6%,垂直燃烧UL-94通过V-0级。TGA研究表明:MPP/PAH阻燃体系对HDPE/WF的热起始分解温度没有太大影响,但却提高了材料在高温时的热稳定性,同时提高材料的成炭性能。通过SEM观察得到:炭层密度增加,有效阻止了氧气入到材料的内部并降低了导热性,也使得内部可燃性气体无法逸出,从而提高材料的阻燃性。  相似文献   

2.
赵盼盼  李丽萍 《材料导报》2017,31(6):115-119
以聚磷酸铵(APP)和次磷酸铝(AHP)为阻燃剂,马来酸酐接枝聚丙烯(MA-g-PP)为界面相容剂,通过熔融共混制备了聚丙烯(PP)/木粉(WF)复合材料。采用UL-94垂直燃烧、氧指数(LOI)、热重分析(TGA)探究了阻燃PP/WF复合材料的阻燃性和热分解过程。实验表明,当APP与AHP质量比为9∶1时,LOI值为28.3%,垂直燃烧UL-94达到V-0级。TGA和DTG测试表明,APP与AHP复配能降低木纤维的分解温度,使复合材料提前成炭,达到阻燃作用;加入APP与AHP的PP/WF复合材料的成炭率提高了141%,其高温稳定性也得到提高。通过SEM观察到,当m(APP)∶m(AHP)=9∶1时,木塑复合材料可形成致密的炭层,具有更好的隔热、隔氧作用,从而提高了阻燃性。结果表明在聚磷酸铵中加入少量的协效剂次磷酸铝可明显提高PP/WF复合材料的阻燃性。  相似文献   

3.
唐启恒  郭文静 《材料导报》2021,35(16):16166-16171
本工作采用人造板热压工艺技术,将三聚氰胺聚磷酸盐( MPP)和次磷酸铝( AHP)作为阻燃剂引入高密度纤维板( HDF)中,制备MPP/AHP-HDF复合材料.采用弯曲强度、冲击强度、极限氧指数(LOI)、锥形量热仪等来评价阻燃剂对复合材料性能的影响.研究结果表明:随着阻燃剂添加量的增加,复合材料的弯曲强度、冲击强度明显下降,通过复合材料断面形貌可以看出阻燃剂与基体间界面粘接较差,界面应力传递效率低,故而阻燃剂的引入导致复合材料力学性能下降.随着阻燃剂添加量的增加,复合材料的LOI逐步增大,当阻燃剂添加量达到15%时,复合材料的LOI达到40% ,而热释放速率峰值和总的热释放量呈下降趋势,这是因为MPP和AHP在燃烧过程中可以有效促进裂解产物成炭,而且MPP还产生很多不燃气体,进而稀释了可燃性气体的浓度,从而提高复合材料的阻燃性能.  相似文献   

4.
目的考察无机填料的种类、粒径以及添加量对PF/HDPE复合材料力学性能和热稳定性的影响。方法以杨木纤维(PF)、高密度聚乙烯(HDPE)、BaSO4、CaCO3、云母粉为原料,采用熔融共混和注塑成型的方法制备PF/HDPE复合材料,进行力学、热重、扫描电镜测试分析。结果3种无机填料均改善了PF/HDPE复合材料力学及热稳定性能,填充CaCO3获得的复合材料性能优于填充BaSO4、云母粉获得的复合材料,并且随着填料颗粒粒径的减少,改善效果增强。填料的添加量需要保持在一定范围内,添加量过低或过高均会造成性能下降。结论添加CaCO3(质量分数为9%,3000目)制备的PF/HDPE复合材料具有最佳的力学及热稳定性。  相似文献   

5.
考察了高密度聚乙烯(HDPE)基木塑复合材料(WPC)在经过挤出机7次循环挤出后性能的变化情况,并加入抗氧剂四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯(1010),研究了1010在循环加工过程中对材料性能的影响。实验结果表明,WPC的力学性能会随着加工次数增加明显下降,弯曲、拉伸和冲击强度分别下降约16%、20%和25%。WPC的结晶度则先降低后上升,储能模量和复数黏度都会不同程度地降低,热重分析则显示填充相木粉和基体HDPE都只发生了有限降解。而1010的加入使WPC的弯曲和拉伸强度略有降低,但会使冲击强度升高3%~7%,使WPC的结晶度提高1%~8%,使WPC的吸水率增大1.5%~7%。  相似文献   

6.
采用木质素磺酸钙(CL)填充高密度聚乙烯(HDPE)制备CL/HDPE复合材料,利用SEM、DSC、XRD对CL/HDPE复合材料进行表征,并对其强度、蠕变行为及应力松弛等力学性能进行测试。结果表明,CL/HDPE复合材料具有良好的结合界面和热稳定性;CL的加入可以提高CL/HDPE复合材料的弯曲强度,但对其冲击强度会产生不利影响;CL含量的增加有利于提高CL/HDPE复合材料的抗蠕变性能和抗应力松弛能力,而温度的升高会对CL/HDPE复合材料的蠕变行为和应力松弛产生不利影响。   相似文献   

7.
以稻壳为原料,以H3PO4、KOH、ZnCl2为活化剂在600℃条件下制备三种活性炭,以生物炭、三种活性炭为填料填充高密度聚乙烯(HDPE)制备生物炭/HDPE复合材料和活性炭/HDPE复合材料,并对其力学性能进行测试和分析。结果表明,活性炭比生物炭具有更高的比表面积和发达的孔隙结构,其中经H3PO4活化制备的活性炭比表面积最高,为714.27 m2/g;活性炭/HDPE复合材料比生物炭/HDPE复合材料具有更佳的力学性能,相对于其他材料而言,经H3PO4活化制备的活性炭/HDPE复合材料具有较佳的弯曲性能、拉伸性能、刚性、弹性、抗蠕变性能及抗应力松弛能力,其弯曲强度、弯曲模量、拉伸强度、拉伸模量分别为38.66 MPa、2.46 GPa、32.17 MPa、1.95 GPa。本研究可为活性炭的材料化利用提供有益的借鉴经验。   相似文献   

8.
APP对木粉-HDPE复合材料阻燃和力学性能的影响   总被引:3,自引:0,他引:3  
以聚磷酸铵(APP)对木粉-HDPE复合材料(WF-HDPE)进行阻燃处理,用锥形量热仪系统评价复合材料的阻燃性能,并进行等温燃烧反应动力学分析,用万能力学试验机进行静态力学试验。结果表明,在35 kW/m2热辐射流量下,APP添加量达到15%时,WF-HDPE燃烧热释放速率(RHR)峰值和总热释放量(THR)均降低约50%、成炭率提高150%,表现出显著的阻燃作用;可用动力学模型ln(1-α)=-kt+C描述WF-HDPE的等温燃烧反应,APP的加入使反应速率常数k降低、半衰期延长。APP对WF-HDPE的冲击性能有显著的不利影响,但能改善刚性,对弯曲强度和拉伸强度影响不大。综合阻燃性能与力学实验结果,APP的适宜添加量为15%左右。  相似文献   

9.
采用高密度聚乙烯(HDPE)为树脂基体在一定加工条件下制备了高密度聚乙烯/木粉发泡材料,研究了马来酸酐接枝聚乙烯(MAPE)作为相容剂对材料的力学性能、泡孔直径分布的影响,比较了发泡材料和未发泡材料的力学性能。结果表明,MAPE含量为5%时,材料具有较好的力学性能,泡孔的存在对于材料的力学性能有着较为明显的影响;发泡材料和未发泡材料力学性能及其变化有所不同,未发泡材料力学性能变化较为显著;MAPE的含量对泡孔直径的分布有一定的影响。  相似文献   

10.
将生物质可再生资源木质素(Lig)和一种P-N-B系阻燃剂单独或复配使用添加到木粉/高密度聚乙烯(WF/HDPE)混合物中,通过挤出成型的方式制备Lig-WF/HDPE复合材料,探究了Lig对阻燃型Lig-WF/HDPE复合材料阻燃性能的影响。锥形量热仪测试结果表明,Lig的加入能有效降低Lig-WF/HDPE复合材料的热释放速率,提高残余物质量。Lig添加量为15wt%时Lig-WF/HDPE复合材料的阻燃效果最佳,但发烟量较大。Lig与P-N-B系阻燃剂复配使用可使(P-N-B)-Lig-WF/HDPE复合材料的发烟量明显降低,阻燃性能进一步提高。Lig添加量为5wt%、P-N-B系阻燃剂添加量为10wt%时,(P-N-B)-Lig-WF/HDPE复合材料的极限氧指数从未添加阻燃剂WF/HDPE复合材料的24.3提高到27.3,且力学性能较两种阻燃剂单独使用时有提升。   相似文献   

11.
木粉(WF)填充增强高密度聚乙烯(HDPE)复合材料具有良好的环境效益,少量引入短切碳纤维(SCF)可进一步提高其力学性能。为改善SCF与WF/HDPE复合材料中塑料基体的界面结合,提高SCF在WF/HDPE复合材料中的增强作用,采用气相、液相及气液双效氧化3种表面处理方式处理SCF,通过挤出工艺制备短切碳纤维增强木粉/高密度聚乙烯复合材料(SCF-WF/HDPE),探讨了不同处理方法对SCF-WF/HDPE复合材料性能的影响。SEM观察显示,表面处理增大了SCF的表面粗糙度,可提高其与基体的界面结合;动态力学性能分析证实碳纤维提高了存储模量。测试结果表明:表面处理过的短切碳纤维可使SCF-WF/HDPE复合材料的力学性能、热力学性能和蠕变性能均得到显著提高,其中气相表面处理的效果最好。对比WF/HDPE复合材料,SCF-WF/HDPE的拉伸强度提高了34.5%,弯曲强度提高了23%,冲击强度提高了54.7%。  相似文献   

12.
将三聚氰胺聚磷酸盐(MPP)和次磷酸铝(AP)阻燃剂添加到木纤维/酚醛树脂(WF/PR)复合材料中,通过人造板热压工艺技术制备阻燃高密度纤维板(MPP-AP-WF/PR)复合材料,探索了MPP和AP组成复配阻燃剂时,MPP-AP-WF/PR复合材料达到最佳阻燃性能时MPP与AP的最佳质量比.采用弯曲强度、吸水厚度膨胀率...  相似文献   

13.
以邻苯二甲酸二辛酯(DOP)为石墨填充高密度聚乙烯(HDPE)复合体系的增塑剂,借助SEC和弯曲实验等手段研究了增塑剂的引入对HDPE/石墨导电复合体系的结晶行为、石墨聚集态结构及PTC特性、力学性能的影响.结果表明,少量增塑剂的引入可以使得基体的微晶尺寸变小,从而改善了导电复合物的PTC特性,提高了材料的力学性能。  相似文献   

14.
以高密度聚乙烯和木粉为原料、马来酸酐接枝聚乙烯为界面增溶剂,采用热压成型的方法制备了木塑复合材料.通过添加不同抗氧刺及调节抗氧剂比例来对比分析各种抗氧剂对木塑复合材料耐老化性能的效果.结果表明,使用抗氧剂可有效改善木塑复合材料的热氧老化性能,其中使用1.5%~2.0%(质量分数)β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯(1076)的效果最好.  相似文献   

15.
采用亚临界流体挤出法制备高密度聚乙烯(HDPE)/木粉复合材料,研究了亚临界流体种类(去离子水、正丙醇和乙醇)与温度对木塑复合材料(WPC)综合力学性能的影响。实验利用傅立叶变换红外光谱、差示扫描量热分析和扫描电镜分别对复合材料的化学组成、热变形温度和界面形貌作了相应的研究。结果表明,亚临界流体的高温高压可以对木纤维起到很好的溶胀作用,一定程度上打破了木素、半纤维素对纤维素的包裹作用,明显促进基体与木纤维之间的机械捏合与酯化反应,增加界面强度。在亚临界流体条件下,尤其在亚临界乙醇条件下,木粉在HDPE树脂基体中具有优异的分散性,拉伸断面处的断裂形式主要以基体与纤维断裂为主,说明HDPE/木粉的WPC具有较好的界面结合强度。  相似文献   

16.
界面相容剂对PE-HD/木粉复合材料力学性能的影响   总被引:8,自引:0,他引:8  
用不同的界面相容剂对高密度聚乙烯(PE-HD)/木粉复合材料进行界面处理,研究了界面相容剂的含量、种类对复合体系力学性能的影响.结果表明,界面相容剂的加入使复合体系的力学性能有不同程度的改善,其中MAPE的加入,对体系的拉伸、弯曲强度提高最大,在MAPE含量为10%时,复合体系的力学性能达到最大值;经EPDM-MA处理的复合材料,其冲击韧性有明显提高;EVA-MA的加入,使复合材料的性能有所提高;SBS对体系界面粘接力的影响不明显;但MAPE和弹性体SBS复配处理的复合体系,其冲击强度的提高尤为显著,这可能是由于MAPE和SBS在复合体系中发生了协效作用,形成具有柔韧性的中间相所致.  相似文献   

17.
以造纸剩余物白泥为填料,马来酸酐接枝聚乙烯(MAPE)为相容剂,采用挤出成型工艺将竹质纤维和高密度聚乙烯(HDPE)进行熔融复合制备竹质纤维/HDPE复合材料。利用万能力学试验机、冲击试验机、扫描电镜及动态力学分析仪,研究了白泥质量分数对复合材料力学性能的影响,并应用分形理论对拉伸强度与断口分形维数之间的关系进行了研究。结果表明,复合材料的冲击强度随着白泥的质量分数增加明显降低,当白泥质量分数为18%时,其弯曲和拉伸性能较好,复合材料拉伸强度与分形维数呈近似指数函数关系;白泥质量分数对复合材料的损耗因子无明显影响,玻璃化转变温度以前,白泥质量分数对复合材料储存模量、损耗模量影响显著,玻璃化转变温度之后对复合材料无明显影响。  相似文献   

18.
采用挤出法制备稻壳/高密度聚乙烯(HDPE)和稻壳炭/HDPE复合材料。利用SEM、XRD对稻壳/HDPE和稻壳炭/HDPE复合材料进行表征,并对其力学性能和抗蠕变性能进行测试对比。结果表明,稻壳和HDPE之间的结合方式与稻壳炭和HDPE之间的结合方式存在根本性的差异,稻壳/HDPE复合材料表现为稻壳被HDPE所包裹,稻壳炭/HDPE复合材料表现为HDPE嵌入稻壳炭的孔隙中;稻壳和稻壳炭的加入都会影响HDPE基复合材料的结晶峰强度,但不会对其微晶结构产生影响;无论是抗弯强度、拉伸强度还是抗蠕变强度,稻壳炭/HDPE复合材料都远远强于稻壳/HDPE复合材料。  相似文献   

19.
通过共挤出技术制备具有核壳结构的共挤出复合材料,其中壳层为木粉/高密度聚乙烯(W/HDPE),核层为杨木单板层积材(LVL),测试了LVL-W/HDPE和LVL在50 J、75 J及100 J能量下的低速冲击性能,并进一步研究水煮-冰冻-干燥环境处理后两者的低速冲击性能。结果表明,与LVL相比,在50 J能量冲击过程中LVL-W/HDPE的吸收能量和损伤深度分别降低2.9%和15.9%;在75 J能量冲击过程中LVL-W/HDPE的吸收能量和损伤深度分别降低3.9%和9.2%;而在100 J能量冲击下,两者的抗冲击性能基本相同;经水煮-冰冻-干燥环境处理后,由于壳层WPC的保护作用,LVL-W/HDPE不仅保持了良好的抗冲击性能,还表现出了优异的耐环境性能。  相似文献   

20.
为利用玻璃纤维提高木塑复合材料的综合性能,探讨玻璃纤维含量对竹粉/高密度聚乙烯(HDPE)复合材料性能的影响规律,首先,采用A-171硅烷偶联剂对竹粉表面进行了改性,并加入了一定量的玻璃纤维;然后,采用热压成型工艺制备了玻璃纤维-竹粉/HDPE复合材料;最后,考察了玻璃纤维含量对复合材料力学性能、热学性能及摩擦学性能的影响,并利用SEM观察材料的断面和磨损表面形貌。结果表明:当玻璃纤维含量为3wt%时,能显著提高竹粉/HDPE复合材料的拉伸强度和弯曲强度,与未添加玻璃纤维的复合材料相比,添加玻璃纤维后复合材料的拉伸强度和弯曲强度分别提高了19.41%和23.54%;在30~60℃温度范围内,复合材料长度-宽度方向上的线膨胀系数随着玻璃纤维含量的增加而明显减小,而同一复合材料的线膨胀系数随温度的升高而逐步增大;在氮气气氛下,随玻璃纤维含量的增加,竹粉/HDPE复合材料的摩擦系数先逐渐增大,而后基本保持不变,磨损率逐渐减小。所得结论显示玻璃纤维含量为3wt%~7wt%的木塑产品适用于建筑横梁(如凉亭或桥梁等),而玻璃纤维含量为7wt%~10wt%的木塑产品适用于高人流量场所(如公园或休闲绿道等)的地面铺装。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号