首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
当架空输电线路遭受雷击而发生冲击闪络时,线路上安装的灭弧防雷间隙装置能够有效地保护绝缘子串免受工频电弧的烧蚀,同时能够在雷电冲击电流击穿间隙后深度抑制工频电弧。为了研究其灭弧效果,首先建立了该装置的气流控制方程组,运用ANSYS10.0软件对流体进行了气流场仿真;然后利用高速摄像机拍摄了电弧的发展过程,通过数字示波器记录了电弧电压波形,对灭弧防雷间隙的灭弧效果进行了试验验证;最后进一步探讨了不同故障电弧电流值下灭弧效果和气流速度的关系。仿真结果与试验结果表明:2.3 ms时刻高速气流速度最大且稳定地作用于电弧;试验得出气流熄灭电弧的时间为3.8 ms,一致说明该装置能快速熄灭电弧;气流速度越大,灭弧防雷间隙的灭弧效果就越好。  相似文献   

2.
当架空输电线路遭受雷击而发生冲击闪络时,线路上安装的灭弧防雷间隙装置能够有效地保护绝缘子串免受工频电弧的烧蚀,同时能够在雷电冲击电流击穿间隙后深度抑制工频电弧。为了研究其灭弧效果,首先建立了该装置的气流控制方程组,运用ANSYS10.0软件对流体进行了气流场仿真;然后利用高速摄像机拍摄了电弧的发展过程,通过数字示波器记录了电弧电压波形,对灭弧防雷间隙的灭弧效果进行了试验验证;最后进一步探讨了不同故障电弧电流值下灭弧效果和气流速度的关系。仿真结果与试验结果表明:2.3 ms时刻高速气流速度最大且稳定地作用于电弧;试验得出气流熄灭电弧的时间为3.8 ms,一致说明该装置能快速熄灭电弧;气流速度越大,灭弧防雷间隙的灭弧效果就越好。  相似文献   

3.
姚莉娜  马平  阎鹏 《中国电力》2015,48(3):32-38
为了研究爆炸气流灭弧防雷间隙的灭弧特性,通过对该灭弧防雷间隙的爆炸气流工频灭弧试验,得出了该灭弧防雷间隙的工频续流电弧在4 ms时间内即被强气流吹灭,气流维持时间大于6 ms。同时建立链式电弧模型和Mayr电弧模型分别对电弧所受气流压力和爆炸气流灭弧防雷间隙的能量散失特性进行研究,并利用力学软件ANSYS14.0对强气流干扰下的电弧能量进行仿真分析。从结果分析可知电弧在气流强压力作用下能量迅速耗散,并在极短时间内被截断熄灭。在实际运行中,降低雷击事故率97%,灭弧效果明显。  相似文献   

4.
采用爆炸气流灭弧是一种最新的防雷方法。为研究爆炸气流灭弧防雷间隙灭弧暂态过程,对35 kV爆炸气流灭弧间隙进行10 k A工频电流灭弧试验,试验表明电弧在爆炸气流的强烈扰动下迅速被拉长截断,灭弧时间约为4 ms。同时根据电弧熄灭的温度判据(即当故障电弧温度降低到3 000~4 000 K时熄灭)利用有限元计算软件FLUENT对气流和电弧耦合作用暂态过程中的电弧温度进行模拟仿真。由仿真结果可知,在高速爆炸气流的作用下,电弧能量变弱,温度呈非线性下降,在4 ms时降至熄灭的临界值熄灭。为了验证试验与仿真的实际效果,进行了爆炸气流灭弧防雷间隙实地运行试验。运行试验表明:爆炸气流灭弧防雷间隙能够降低雷击跳闸率90%以上,安装灭弧间隙后的输电线路既限制了雷击过电压,又能显著降低雷击事故率,具有良好的实用性。  相似文献   

5.
新型喷射气流灭弧防雷间隙是一种有效避免输电线路遭受雷击的防雷技术手段。为进一步论证其性能,利用Navier-Stokes(N-S)方程对气流灭弧暂态过程进行了描述,说明灭弧气丸爆炸产生的高速气流使温度场、速度场发生了急速变化,进而破坏了电弧能量的稳态,达到迅速灭弧的效果。并利用ANSYS AUTODYN有限元分析软件对气流与电弧的作用过程进行了仿真分析,表明灭弧气丸爆炸后会产生带有巨大能量的高速气体并迅速充满整个空间,该高速气体与电弧快速、全面作用并迅速破坏等离子体动态平衡,使电弧在0.2 ms内极快速熄灭。通过试验对仿真结果进行了验证,证明新型灭弧防雷间隙在雷击发生初期就迅速动作,可快速灭弧,且灭弧后依然有强气流存在,保证了电弧不会重燃。研究表明,该新型灭弧防雷间隙对于输电线路防雷极其有效。  相似文献   

6.
为了提高中低压配网线路的防雷性能,降低雷击跳闸率,利用"气吹灭弧"方法,研究了一种对工频电弧有强烈抑制作用的自膨胀气流灭弧防雷间隙装置。该间隙能够精准定位雷电放电路径,迫使电弧弧柱形成分段,同时产生自膨胀高压高速气流强烈抑制工频续流电弧的暂态发展过程,并最终熄灭电弧。研究了自膨胀气流的形成与灭弧原理,建立了自膨胀气流耦合工频续流电弧数学模型,运用了流体力学软件FLUENT对自膨胀气流灭弧过程进行仿真分析。进行了灭弧间隙装置熄灭电弧试验,并借助高速摄像机捕捉装置的灭弧详细过程,分析了装置在10 kV配电网线路的实际运行效果。结果表明:自膨胀灭弧气流作用在工频电弧暂态发展的早期阶段,深度抑制其发展过程,促使电弧拉长、变形、冷却、截断,并在4 ms内完全熄灭电弧并抑制重燃;防雷间隙能够大幅度降低雷击跳闸率,保护电网运行安全。  相似文献   

7.
为了解决输电线路防雷难题,在并联间隙的基础上提出了一种基于爆轰气流作用的灭弧防雷装置。通过建立链式电弧模型,对电弧元进行受力分析,利用爆轰相似理论对爆轰波的压力进行计算,并进一步推导出电弧元的各速度分量控制方程。利用ANSYS AUTODYN模拟爆轰气流与电弧等离子体耦合过程,得到气流场和电弧温度场的数值仿真,并进行灭弧试验验证。结果表明:电弧元的各速度分量与电弧元的长度无关,与爆轰气流压力有关;且气流压力越大,电弧运动速度越快,越利于熄灭电弧。爆轰气流速度最大可达到6 000 m/s,4.6 ms时电弧温度由最高的14×10~3 K下降到3×10~3 K,且在爆轰气流作用下电弧熄灭,没有发生重燃。  相似文献   

8.
为提高喷射气流灭弧防雷间隙的灭弧能力,了解其灭弧原理以及气流通道管控长度对灭弧过程的影响是非常重要的。从能量平衡角度分析了喷射气流熄灭电弧的可行性,推导得出了气流速度与气流通道管控长度呈正相关,增大气流通道管控长度能够促进气流发展,增强对流散热功率,加速电弧冷却,从而提升灭弧效率。通过COMSOL Multiphysics仿真平台搭建了灭弧通道的二维几何模型,模拟了电弧在气流耦合作用下的放电传热过程,证明了装置的灭弧有效性;然后改变气流通道管控长度变量,得出相应仿真结果并对比分析;最后设置灭弧实验进行了验证。结果表明,延伸气流通道管控长度能够更加快速有效地熄灭电弧并抑制电弧重燃,进一步优化了喷射气流灭弧防雷间隙的灭弧性能。  相似文献   

9.
多断口爆炸气流灭弧防雷间隙是一种主要针对10 k V电压等级输电线路的新型灭弧防雷装置。为研究其灭弧能力,利用短路发电机提供5 k A最大工频电流,对其灭弧过程进行了试验。试验现象说明:爆炸气流能够强烈干预电弧,在短时间内将电弧迅速拉长并吹出陶瓷管外,加快电弧等离子体热游离和电弧能量的扩散,瞬间冷却并熄灭电弧。试验结果表明:从装置触发到灭弧结束历时70μs左右,其中从气流接触电弧到电弧熄灭的时间小于10μs,并且有TNT装置的灭弧效果要明显优于无TNT的装置,装置触发后产生的高速气流能够维持时间为600μs,强烈作用于电弧生成的初始阶段,实现对电弧的长久抑制,不会出现残压和电弧重燃现象,而且此装置能经受50次65 k A大电流冲击或20次100 k A大电流冲击。证明多断口爆炸气体灭弧防雷间隙装置能切实保证供电可靠性,保障电网的正常运行。  相似文献   

10.
为了提高高压架空线路的耐雷水平,解决电网防雷难题,基于“疏导式”防雷技术基础上研制了一种利用高速气流熄灭电弧的爆炸气流灭弧防雷装置。该装置允许空气间隙击穿形成电弧通道,并同时利用雷电脉冲信号在电弧形成瞬间同步触发灭弧气丸,以产生高速气流在工频电弧建弧初期就将其完全熄灭,并且强气流能快速恢复空气介质强度,防止电弧重燃。文中首先对该装置的灭弧原理进行了详细论述;然后通过雷电冲击试验、测试装置触发响应时间试验和工频大电流灭弧试验,检验了该装置的电气性能和灭弧效果,经试验发现其均满足试验要求;最后根据实际运行效果发现该装置在线路上运行工况良好,防雷效果十分优异。  相似文献   

11.
为解决雷击闪络造成的直流输电线路跳闸这一难题,建立了高速气流的速度冲击模型,分析了直流电弧运动的受力情况,并推导出直流电弧熄灭的条件;然后在建模分析的基础上,利用FLUNET软件仿真分析了在理想状态下高速气流熄灭直流弧的过程,并在高压试验室的条件下进行了灭弧试验。研究结果表明:仿真的灭弧时间为1.2 ms,而试验得出的灭弧时间为1.7 ms;由于仿真不能模拟真实的熄弧条件,因此仿真和试验得出的熄弧时间存在0.5 ms的误差,但都小于继电保护的动作时间。研究结果验证了高速气流灭弧防雷间隙熄灭直流电弧的有效性。  相似文献   

12.
电力系统中大部分的雷害事故源于输电线路,为解决线路雷击闪络,造成雷击跳闸这一难题,提出了高速气流灭弧防雷方法。该方法将雷击电弧转移到放电间隙,通过雷电流信号触发气丸爆炸产生高速气流,快速地切断电弧,有效地阻止了雷击跳闸。文中建立高速气流的速度场模型和Mary电弧暂态模型,利用FLUENT有限元分析软件对气流和电弧的耦合作用进行了仿真分析,得出爆炸产生的高速气流使电弧在1.7 ms内熄灭。在高压实验室进行了灭弧试验,通过高速摄像机和示波器监测电弧熄灭过程,试验显示高速气流能在2 ms内熄灭电弧,仿真结果和试验结果基本相符,两者得到的灭弧时间均小于输电线路的继电保护的时间,由此可以得出高速气流灭弧防雷方法的有效性和可行性。  相似文献   

13.
为解决输电线路频繁遭受雷害的问题,一种安装于输电线路的新型喷射气流防雷灭弧间隙已开发并成功运用于10kv和35kv线路。采用改进的mayr电弧模型对新型防雷灭弧间隙熄灭单相接地短路电流的灭弧性能进行仿真。运用二维N-S方程和k-ε湍流模型求解喷射气流的速度和范围,以确定mayr模型的耗散系数。通过开断试验确定电弧模型的时间常数。通过对比在小电流灭弧试验中示波器波形和高速摄像机拍摄画面,所描述模型可较好的反映气流对电弧的强烈灭弧作用,证明喷射气流防雷灭弧间隙可快速、强烈灭弧。  相似文献   

14.
为了解决输配电线路的雷击问题,目前研制了1种主要应用于10 kV配电线路的多间隙强气流灭弧防雷装置。采用电弧3维动态磁流体动力学(MHD)模型描述了电弧的特性,对高速气流作用下的灭弧过程进行了仿真分析,得出熄弧时间为0.16 ms。同时进行了灭弧试验,通过高速摄像机和示波器观测了电弧熄灭过程。试验结果表明从装置触发到灭弧结束历时0.3 ms,其中从产生气流到气流接触电弧时间小于0.01 ms。验证了仿真得出的熄弧时间与试验中的熄弧时间基本相符,证明该装置能将电弧熄灭在"萌芽期",深度抑制后续工频电弧发展。  相似文献   

15.
为了研究10 kV电压等级多断点灭弧防雷间隙的熄弧特性,采用Fluent软件对高速气流耦合电弧过程进行了仿真分析。同时搭建了试验回路并进行了灭弧试验,通过高速摄像机观察了电弧熄灭过程,并且利用示波器采集了灭弧波形。仿真结果表明:电弧在高速气流作用下被分段,切断电弧能量补给通道,电弧温度急剧下降,最终电弧熄灭。试验结果表明:10 kV电压等级多断点灭弧间隙具有良好的熄弧特性,能在0.3 ms时间内熄灭工频电弧并且在后续时间内电弧未发生重燃。实际运行结果表明:多断点灭弧防雷间隙在实际安装运行中能有效降低雷击跳闸次数以及抑制工频电弧发展。仿真结果、试验结果及实际运行结果一致证明了多断点灭弧防雷间隙能够快速、有效地熄灭电弧,抑制工频电弧重燃。  相似文献   

16.
为解决输电线路防雷问题,提出一种压缩灭弧防雷方法,发明了一种与绝缘子并联的压缩灭弧防雷装置。为验证其灭弧的有效性,首先利用Ansys Fluent有限元分析软件对纵向气流熄灭电弧的作用过程进行了仿真分析,表明装置触发后会产生速度峰值为500 m/s的有效膨胀灭弧气流迅速作用于电弧,从而加速电弧对流散热破坏电弧等离子体动态平衡,使电弧在0.2 ms内极快速熄灭。然后通过试验对仿真结果进行了验证,证明压缩灭弧防雷装置能在冲击电弧的起点就快速响应,并迅速产生高速气流作用于冲击电弧,使冲击电弧迅速熄灭,破坏后续工频电弧通道,实现"建弧无通道"的灭弧效果。并结合实际应用效果与试验和仿真,三者共同佐证了装置的灭弧效果。  相似文献   

17.
压缩气流灭弧防雷间隙是一种冲击电弧诱导型灭弧防雷装置,它通过灭弧管道的特殊排列结构使得冲击电弧能够被优先吸引进入在压缩管道内并形成压力梯度产生自膨胀气流,在各个相邻灭弧管道拐点处粉碎性截断电弧直至电弧熄灭。为了计算在安装压缩气流灭弧防雷间隙后的雷击跳闸率,文中根据并联间隙与绝缘子串的放电电压分布特性得出了灭弧防雷装置的有效保护系数,通过数理统计的方法处理了试验数据,得出了安装压缩气流灭弧防雷间隙后配网线路上的建弧率,同时建立了压缩气流灭弧防雷间隙下的雷击跳闸计算模型。通过算例计算了某线路在安装灭弧装置前后的雷击跳闸率,通过数据分析可知安装压缩气流灭弧防雷间隙后有效降低了雷击跳闸率。  相似文献   

18.
喷射气体灭弧防雷间隙的灭弧效果   总被引:2,自引:0,他引:2  
绝缘子串两端安装喷气式灭弧防雷间隙是一种新型灭弧防雷方法。为研究喷射气体灭弧防雷间隙灭弧能力,利用ANSYS14.0软件对气流作用于电弧的过程模拟仿真,同时建立Mayr电弧数学模型,对气流与电弧竞争关系进行了深入探讨。提出"疏导型"防雷思想,结合"气吹灭弧"的方法,发明了一种基于强气流作用下的灭弧防雷间隙装置。该间隙能够吸引雷电电磁脉冲触发装置中的弹丸,触发后产生的高速气流强烈作用于暂态电弧生成的初始阶段,实现对电弧的主动、初期、高效抑制,达到保护绝缘子串、高压输电线路和降低雷击跳闸率的效果。灭弧试验表明:安装喷射气体灭弧防雷间隙装置是一种新型高效的架空输电线路防雷保护方法,能够保证供电可靠性及电网的正常运行。  相似文献   

19.
多间隙强气流灭弧防雷装置可有效截断雷电弧,深度抑制工频电弧的发展和重燃.为进一步验证其性能,利用喷口射流原理分析耦合场的气流状态,并采用喷口射流衰减电弧模型描述电弧的耦合特性,同时在试验室环境下进行的灭弧试验与仿真结果基本吻合,证明了防雷装置动作迅速,产生的高速气流作用在雷电流衰减期,可在各喷口处将电弧截断,且电弧熄灭后不重燃.实际应用也表明,该装置安全可靠,大幅提升了输电线路防雷的有效性.  相似文献   

20.
为研究影响基于气吹灭弧原理的自脱离防雷装置灭弧的影响因素,文中基于磁流体动力学理论建立装置灭弧过程的数值仿真模型,研究电流初始相角与装置气流速度峰值对装置熄弧性能的影响,并结合大电流燃弧试验验证模型有效性。研究结果表明,自脱离防雷装置灭弧时间与工频电流初始相角密切相关,在0°~180°电角度区间内,电弧熄灭所需时间随工频电流初始相角的增大而减小。装置气流速度峰值对电弧熄灭具有决定性作用。当灭弧气流速度峰值高于243 m/s时,装置可在半个工频周期内有效熄灭电弧并防止重燃;灭弧气流速度峰值低于243 m/s时,在装置产气灭弧筒出口处将出现“电弧堵塞”现象导致电弧重燃。研究结论可为气吹防雷装置灭弧性能优化提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号