首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聚碳酸酯/丙烯腈-丁二烯-苯乙烯(PC/ABS)合金兼有PC和ABS的优点,但ABS的加入使PC/ABS合金阻燃性能降低,很多场合都需要对其进行阻燃改性。在环境保护越来越受重视的今天,芳基磷酸酯是卤系阻燃剂的良好替代品,并已在PC/ABS无卤阻燃领域获得广泛应用。文中结合市场及环保的要求,采用芳基磷酸酯(TPP)与磷酸锆(α-ZrP)复配阻燃PC/ABS合金,研究其阻燃性能及热稳定性。热失重分析发现,在氮气氛围中,TPP与α-ZrP复配阻燃PC/ABS合金的热稳定性提高,尤其是高温段的热稳定性;在垂直燃烧和极限氧指数测试中,TPP与α-Zr~复配阻燃并没出现良好的协同效果;而在锥形量热测试中,TPP与α-ZrP复配阻燃能够延长PC/ABS合金到达最高峰值速率的时间,并减缓燃烧过程延长燃烧时间。  相似文献   

2.
无卤阻燃PC/ABS的制备及燃烧性能   总被引:2,自引:0,他引:2  
以齐聚磷酸酯(BDP)作为添加型阻燃剂制备了阻燃PC/ABS塑料合金,采用锥形量热仪(CONE)、扫描电镜(SEM)及热裂解-气相/质谱法(Py-GC/MS)等对材料的燃烧性能和阻燃机理进行了研究.结果表明,阻燃剂BDP对PC/ABS有良好的阻燃效果;BDP的加入使PC/ABS燃烧残留物上产生大量的致密微孔,同时由Py-GC/MS分析表明BDP的加入降低了PC/ABS可燃性降解产物的生成,裂解产物中含有三苯基磷酸酯(TPP),说明BDP在塑料合金降解过程中分解生成TPP发挥阻燃作用.  相似文献   

3.
高顺  郭正虹 《复合材料学报》2020,37(11):2897-2907
选用以凝聚相阻燃机制为主的间苯二酚-双(二苯基磷酸酯)(RDP)作为阻燃剂,纳米SiO2为协效剂,以熔融共混法制备了聚碳酸酯(PC)-丙烯腈-丁二烯-苯乙烯共聚物(ABS)阻燃合金。通过垂直燃烧(UL94)和锥形量热测试(Cone)探究了纳米SiO2与RDP复配对PC-ABS合金阻燃性能和燃烧行为的影响。采用SEM观察燃烧残炭的微观形貌,用EDS分析炭层表面元素含量的变化,进一步探究了纳米SiO2与RDP在PC-ABS凝聚相中的协效阻燃机制。通过拉伸性能和冲击性能测试研究纳米SiO2与RDP复配对PC-ABS合金力学性能的影响及甲基丙烯酸甲酯-丁二烯-苯乙烯(MBS)对PC-ABS合金的增韧增容作用。结果表明,纳米SiO2与RDP可以在凝聚相中形成Si—O—P化合物,对PC-ABS合金的燃烧炭层起到增强作用,从而改善PC-ABS合金的阻燃性能;适量MBS的加入可以提高PC-ABS合金的冲击强度和断裂伸长率,但会降低其阻燃性能。   相似文献   

4.
采用磷酸酯(PX-220)作为阻燃剂,聚四氟乙烯(PTFE)、硼酸锌(ZB)作为阻燃协同剂,聚碳酸酯(PC)和聚对苯二甲酸丁二醇酯(PBT)为基体,通过熔融挤出混合,获得阻燃PC/PBT合金。研究了磷酸酯/PTFE和磷酸酯/ZB复合阻燃剂对PC/PBT合金阻燃性能、热分解行为的影响,分析了磷酸酯、PTFE和ZB在阻燃PC/PBT合金中的阻燃机理,采用扫描电镜(SEM)观察阻燃PC/PBT合金的燃烧物表面形态。研究结果表明,磷酸酯/PTFE和磷酸酯/ZB复合阻燃剂在PC/PBT合金中具有优良的阻燃协同作用,使该阻燃材料的氧指数达到30以上;垂直燃烧达到V-0级。TG曲线表明,磷酸酯的加入提高了PC/PBT合金的热分解温度,延缓了PC/PBT合金燃烧速度。合金材料燃烧炭层形貌扫描电镜(SEM)说明,复合阻燃剂能增加炭层密度,提高阻燃效果。  相似文献   

5.
目前非卤阻燃PC/ABS已成为开发、应用的主要趋势,其中磷系阻燃剂低毒、持久、价廉,不仅能对合金有效阻燃,而且能改善合金的加工流动性,是近年来发展迅速的一种高性能阻燃剂。综述了近年来国内外阻燃PC/ABS合金用磷系阻燃剂的现状及研究进展,重点介绍了各种无机磷系和有机磷系阻燃剂的种类、配方及其对PC/ABS合金阻燃性能的影响,并简要介绍了相关阻燃机理。开发磷含量高、相对分子质量大、热稳定性好、低毒、低烟的磷系化合物,以及利用不同磷酸酯在气固相协效阻燃的特性进行的复配技术成为有机磷系阻燃剂发展的趋势。  相似文献   

6.
芳基磷酸酯对PC/PBT合金阻燃性能和酯交换反应的影响   总被引:2,自引:0,他引:2  
在双酚A型聚碳酸酯/聚对苯二甲酸丁二醇酯合金(PC/PBT)中分别采用两种芳基磷酸酯[间苯二酚双(二苯基磷酸酯)(RDP)和双酚A双(二苯基磷酸酯)(BDP)]为阻燃剂,考察了其对PC/PBT合金力学性能、阻燃性能和其在锥形量热仪中的热释放行为影响。并且采用差示扫描量热仪(DSC)研究了芳基磷酸酯对PC/PBT体系的酯交换反应,以解释力学性能变化的原因。结果表明,RDP和BDP在PC/PBT中用量为10%时均达到UL94V-0级别,但加入BDP的体系的力学性能优于加入RDP的体系。热释放行为说明,RDP的阻燃作用同时包括气相与凝聚相作用,而BDP主要为凝聚相阻燃作用。BDP明显地抑制了PC/PBT的酯交换反应,因此有较好的力学性能。  相似文献   

7.
磷酸酯阻燃剂在PC/ABS合金中的应用   总被引:5,自引:0,他引:5  
本文概述了国外用于PC/ABS合金的磷酸酯阻燃剂的现状与研究进展。近年来许多公司在无卤阻燃PC/ABS合金上投入大量的研究工作。由于聚碳酸酯是燃烧成碳率很高的聚合物,以固相作用为主的阻燃剂尤其是磷酸酯阻燃剂成为PC/ABS合金的最佳选择。  相似文献   

8.
阻燃PC/ABS的热降解动力学   总被引:2,自引:0,他引:2  
将自合成的一种新型含磷阻燃剂DPWDF与PC/ABS共混;利用热重分析(TGA)法研究了PC/ABS和阻燃PC/ABS在空气氛围中的热稳定性,利用Flynn-Wall-Ozawa方法研究了PC/ABS及阻燃PC/ABS的热降解动力学。结果表明,阻燃剂降低了PC/ABS初始分解温度(IDT)而提高了它的高温残炭量;在转化率70%以前,阻燃PC/ABS的活化能低于PC/ABS,而在转化率70%以后,阻燃PC/ABS的活化能高于PC/ABS。此实验结果体现了该含磷阻燃剂的凝聚相阻燃机理。  相似文献   

9.
以聚苯氧基磷酸-2-10-氢-9-氧杂-磷杂菲基对苯二酚酯(POPP)为阻燃剂,对PC/ABS合金进行阻燃改性。通过极限氧指数(LOI)测试、垂直燃烧(UL-94)测试、热重分析(TGA)测试、锥形量热(CONE)测试和扫描电镜(SEM)测试等表征方法研究其阻燃性能。结果表明,当阻燃剂添加量为15%时可以达到UL94 V-0级,LOI值为21.1%;最大热释放速率(Pk-HRR)下降41.7%,热释放总量(THR)下降31.1%;TGA和SEM分析显示改性PC/ABS合金具有更好的成炭效果,燃烧后能促进表面生成致密多孔炭层,有效的隔绝氧气提高材料的阻燃性能。  相似文献   

10.
将聚硼硅氧烷(PB)阻燃剂分别与三种有机磷酸酯(OPP)阻燃剂进行复配,并将此复合阻燃剂添加到聚碳酸酯(PC)中制备了阻燃PC材料(FR-PC)。采用极限氧指数(LOI)和锥形量热分析研究了PB对OPP/PC体系的协效阻燃作用。结果表明,在阻燃剂总量为5%(质量分数)时,添加占阻燃剂总量25%(质量分数)以上的PB可以提高OPP/PC体系的LOI。PB阻燃剂具有促进成炭的作用,可使OPP/PC复合体系在燃烧过程中释放的烟、热以及CO有不同程度的降低,燃烧过程趋于平缓,尤其使体系的烟释放量显著降低,三种OPP/PC阻燃体系的总烟释放量分别下降30%~50%,大大降低了火灾的危害性。添加适量PB能够提高OPP/PC体系的拉伸强度、弯曲强度及维卡软化点温度,并且使PC复合阻燃材料的透光率有所提高,保持了PC良好的透明性。  相似文献   

11.
将聚硼硅氧烷(PB)阻燃剂分别与三种有机磷酸酯(OPP)阻燃剂进行复配, 并将此复合阻燃剂添加到聚碳酸酯(PC)中制备了阻燃PC材料(FR-PC)。采用极限氧指数(LOI)和锥形量热分析研究了PB对OPP/PC体系的协同阻燃作用。结果表明: 阻燃剂总质量分数为5%时, 添加质量分数1.25%以上的PB可以提高OPP/PC体系的LOI; PB阻燃剂具有促进成炭的作用, 可使OPP/PC复合体系在燃烧过程中释放的烟、热以及CO有不同程度的降低, 燃烧过程趋于平缓, 尤其使体系的烟释放量显著降低, 三种OPP/PC阻燃体系的总烟释放量下降31.8%~51.0%, 大大降低了火灾的危害性; 添加适量PB能够提高OPP/PC体系的拉伸强度、弯曲强度及维卡软化点温度, 并且使PC复合阻燃材料的透光率有所提高, 保持了PC良好的透明性。  相似文献   

12.
高强耐热阻燃PC/ABS塑料合金研究   总被引:7,自引:0,他引:7  
采用PC和ABS为主要原料,ABS接枝物为相容剂,十溴二苯醚和三氧化二锑为阻燃体系制备PC/ABS塑料合金,利用扫描电镜(SEM)和透射电镜(TEM)对PC/ABS塑料合金微观结构进行研究,并对力学性能、热性能和阻燃性能进行了测试.结果表明,当PC、ABS和ABS接枝物三者比例为54∶2323时,合金的拉伸强度、弯曲强度、缺口冲击强度和热性能与电视机配件中的PPO相当,断裂伸长率为97.3%,弯曲模量为2479MPa,无缺口冲击强度为NB(冲不断),阻燃性达到V-O级,均远优于PPO,可以替代PPO.  相似文献   

13.
以十溴二苯乙烷(DBDPE)/三氧化二锑(Sb_2O_3)协同体系为阻燃剂,聚四氟乙烯(PTFE)为抗滴落剂,通过熔融共混法制备聚碳酸酯(PC)/丙烯腈-丁二烯-苯乙烯共聚物(ABS)阻燃合金。采用苯乙烯与丙烯腈无规共聚物(SAN)和ABS高胶粉(ABS-HRP)调节PC/ABS阻燃合金中ABS的相组成,通过扫描电子显微镜(SEM)观察ABS相中SAN与PB两相比例对阻燃合金相形态和相界面的影响,并通过冲击性能、拉伸性能和阻燃性能测试研究ABS相组成对阻燃合金力学性能和阻燃性能的影响。结果表明,在PC和ABS质量比为70:30、溴锑阻燃剂为5 phr的前提下,当用5 phr SAN取代ABS,合金可以达阻燃UL 94 V-0,缺口冲击强度由7.6 kJ/m~2提高到10.3 kJ/m~2,拉伸强度从52.3 MPa提高到54.5 MPa,少量SAN(5 phr)可以起到刚性粒子增强增韧的双重效果;当用15 phr ABS-HRP取代ABS,合金可以达阻燃UL 94 V-0,并且保持较好韧性(缺口冲击强度29.2 kJ/m~2)和刚性(拉伸强度44.7 MPa)的平衡。  相似文献   

14.
利用β-环糊精(β-CD)独特的分子空腔,以β-CD为主体,二茂铁(FE)为客体制备了包合物。将此包合物作为成炭剂与1,3-苯二酚双(二苯基磷酸酯)(RDP)复配应用于环氧树脂(EP)的阻燃。热失重测试结果表明,此复配阻燃剂能够有效提高EP基体达到最大热降解(分解)速率时对应的温度,且呈现出良好的成炭性能。当复配阻燃剂的添加量为20%时,EP的极限氧指数(LOI)提高到35.0%,垂直燃烧测试(UL-94)达到V-0级别;锥形量热测试结果表明,20%的添加量能使EP的热释放速率峰值和总热释放量分别降低29.9%和29.1%,且总生烟量降低11.5%。因此β-CD包合物和RDP复配能够有效提高EP的阻燃和抑烟性能。  相似文献   

15.
芳基二磷酸酯的合成、表征及对ABS的阻燃研究   总被引:1,自引:0,他引:1  
为了获得无卤阻燃ABS产品,选用了磷酸酯类阻燃剂和成炭剂复配的方式对ABS进行了阻燃研究.合成了两种阻燃剂:四-(2,6-二甲苯基)间苯二酚二磷酸酯(DMP-RDP)、四-(2,6-二甲苯基)对苯三酚二磷酸酯(DMP-HDP),采用FTIR、1H-NMR、TGA等对产物进行了表征.将两种含磷阻燃剂分别和酚醛树脂复配对ABS进行阻燃处理,并研究其热降解行为.氧指数(LOI)测试显示,两种含磷阻燃剂和酚醛树脂复配比例为4:1时,LOI最大,且DMP-HDP的氧指数稍高.结合TGA分析,阻燃剂复配可以促进成炭,磷残留于炭层中,有利于阻燃,炭残余量越大,炭层越稳定,阻燃效果越好.  相似文献   

16.
丙烯腈(Acrylonitrile)-丁二烯(Butadiene)-苯乙烯(styrene)共聚物,即ABS树脂,是一种重要的工程塑料,然而其极易燃烧的性质在很大程度上限制了其的广泛应用。本文采用膨胀型阻燃剂—[4-(二苯氧基-磷酰基氨基)-6-苯基-[1,3,5]三嗪-2-基]氨基磷甲酸二苯基酯(DPCPB)和纳米级三元水滑石粉粒Mg-Al-Co-LDHs组成复配体系,对ABS树脂进行阻燃研究。实验结果表明,新型膨胀型阻燃剂DPCPB能够有效阻燃ABs树脂,在配方ABS/DPCPB=100/25,ABS/DPCPB/LDHs=100/21/4的添加条件下.复合材料的极限氧指数(LOI)从纯ABS树脂的18.1分别提高到23.9、24.7,同时垂直燃烧实验UL-94分别通过V-2、V-1级测试。而不同材料的热失重曲线(TGA)表明,新型阻燃体系同时具备气相与凝聚相双重阻燃机理,可显著提高复合材料燃烧后的残炭产量,Mg-Al-Co-LDHs的添加能够与DPCPB产生良好的协效阻燃作用。  相似文献   

17.
采用聚磷酸铵(APP)、三聚氰胺氰脲酸盐(MC)和聚苯醚(PPO)复配制备膨胀阻燃剂(IFR),与阻燃协效剂间苯二酚双(二苯基磷酸酯)(RDP)进行聚乙烯(PE)阻燃。借助氧指数、垂直燃烧测试,探讨IFR与阻燃协效剂RDP间的协效性,研究RDP不同添加量对IFR阻燃复合材料燃烧性能的影响,并对其力学性能进行测试。利用TG,DTG热分析技术对协效性进行验证。结果表明:RDP与IFR具有阻燃协效作用,RDP的协效性主要在热分解的第一阶段发挥作用,可催化APP提前分解,RDP的加入降低了热分解过程的热释放量,促进了多孔泡沫炭层的形成,并显著提高材料的残炭量;当RDP的添加量为5%(质量分数)时,氧指数(LOI)达到最大值31,并通过UL94V-0级。可见RDP与APP/MC/PPO阻燃剂复配可大幅提高PE的抗燃烧性能。  相似文献   

18.
以三(2-羟乙基)异氰脲酸酯与对苯二甲酸为原料,通过熔融聚合反应,在无溶剂条件下制备出异氰酸酯类化合物(TT1),采用核磁氢谱、红外光谱、元素分析对TT1结构进行表征,通过热重对TT1的热稳定性进行测定。将TT1与结晶II-型聚磷酸铵(APP-II)按照不同比例复配得到膨胀型阻燃剂(IFR),将IFR添加到聚丙烯(PP)中,得到PP/IFR阻燃复合物。通过氧指数、UL-94垂直燃烧、锥形量热测试对PP/IFR复合物的阻燃及燃烧性能进行评定,通过TG对其热稳定性进行研究,以扫描电镜观测阻燃复合物燃烧后生成的炭层微观结构。测试结果表明,TT1和APP存在协效作用,复配的膨胀阻燃剂IFR对PP具有优良的阻燃效果。当IFR添加量为25%(质量分数,下同)时,PP/IFR的氧指数达到32.3%,UL-94垂直燃烧达到V-0级(样条厚3.0mm),且阻燃复合材料燃烧中热释速率明显减缓。  相似文献   

19.
应用两种水性磷系阻燃剂——磷酸铵类阻燃剂(DAG-50)和磷酸酯类阻燃剂(DAG-80)及其复配阻燃剂对天然黄麻纤维进行阻燃改性,并与皮芯结构聚酯纤维制备成黄麻纤维/聚酯纤维复合材料,通过燃烧测试、SEM、红外、热失重、热失重-红外联用等技术分析了此两种阻燃剂及复配阻燃剂对黄麻纤维及其黄麻纤维/聚酯纤维复合材料的阻燃效果及阻燃机制,并筛选出适合黄麻纤维/聚酯纤维复合材料产业化的阻燃改性配方。结果表明,阻燃剂DAG-50阻燃改性效果良好,但容易析出于黄麻纤维表面。阻燃剂DAG-80能较为均匀地包覆在黄麻纤维表面,阻燃改性效果好,但其价格较高。DAG-50与DAG-80形成的复配阻燃剂,阻燃效果好,既避免了单独使用DAG-50时阻燃剂易析出问题,且复配阻燃剂接近中性,避免设备腐蚀。综合考虑成本与阻燃性能,使用DAG-50与DAG-80复配阻燃剂比例为2∶1且浓度为55wt%时,可达到黄麻纤维/聚酯纤维复合材料B1级阻燃。  相似文献   

20.
以阻燃齐聚物(PSPTR)和酚醛树脂(PF)作为膨胀型阻燃剂(IFR)阻燃丙烯晴-丁二烯-苯乙烯共聚物(ABS), 通过极限氧指数(LOI)和水平垂直燃烧(UL-94)测试研究了阻燃PSPTR-PF/ABS体系的阻燃性能。研究表明, 当PSPTR:PF=1:1(质量比), 总质量分数为30%时, 体系的LOI为28.2%, UL-94达V-1级别。采用热重-红外联用(TG-IR)技术探索了阻燃体系的热性能和热分解历程, 发现PSPTR-PF阻燃剂的加入延缓了ABS的热分解, 提高了ABS的热稳定性能。采用SEM、 XRD和Raman光谱分析了燃烧炭层的形貌和结构。结果表明, PF不仅改善了炭层的致密度, 而且完善了炭层的石墨结构, 最终提高了ABS的阻燃性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号