首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究模块化多电平(MMC)低频电容电压波动的问题,提出了一种MMC低频运行控制策略。首先,建立了MMC的数学模型,从能量流动的角度研究了MMC的电容电压波动情况,指出桥臂能量偏差与系统的运行频率呈反比,致使系统在低频下无法正常运行。针对这一问题,提出了一种在桥臂环流和输出电压中加入高频方波分量的方法来抑制电容电压的波动,确保MMC桥臂能量的平衡。理论分析结果表明,相比于加入高频正弦分量的方法,采用该方法得到的桥臂环流的峰值降低了50%。最后采用上述方法进行了阻感和电机实验,结果表明,模块电压波动得到了有效抑制,电机低频调速性能良好,证明了所提出的控制方法的有效性。  相似文献   

2.
详细分析了模块化多电平变流器能量流动情况,研究了变流器桥臂能量波动的原因,并指出桥臂能量波动与运行频率成反比,且当模块化多电平变流器调速系统在低频运行时,由于模块电容电压波动过大而无法正常工作。针对该问题,文中提出在桥臂共模电流中加入高频正弦分量,并同时在变流器输出共模电压中加入高频方波分量,从而在变流器上、下桥臂间引入高频能量交换,抑制模块电容电压波动。阻感及电机负载的实验结果证明,采用所提出的控制方法后模块电容电压得到有效的抑制,低频调速系统性能良好。  相似文献   

3.
模块化多电平换流器桥臂电流分析及其环流抑制方法   总被引:1,自引:1,他引:1  
为了抑制模块化多电平换流器(MMC)内部环流,对MMC桥臂电压的波动和环流产生的机理进行了分析,提出了一种抑制环流的补偿控制方法。MMC在进行功率交换时,由于桥臂电流的作用,导致子模块电容电压发生周期性的变化,采用平均值的方法分析得出子模块电容电压包含直流分量和交流分量。采用最近电平调制法进行换流器电压调制,由于子模块电容电压含有直流分量以及基频分量偏差,导致桥臂电压与期望值间存在基频偏差和二倍频等分量,从而产生环流。通过对桥臂电压与期望值的偏差量进行补偿,能够消除桥臂电压的偏差,从而抑制换流器桥臂间的环流。在PSCAD/EMTDC中搭建了11电平MMC双端直流输电系统,仿真结果验证了所提方法的有效性。  相似文献   

4.
针对模块化多电平变流器(MMC)在变频运行状态下子模块电容电压存在剧烈脉动、桥臂电流以及输出电流出现严重畸变的问题,提出一种基于混合谐波注入与附属电压能量控制的MMC变频运行控制策略。该策略从MMC桥臂能量出发,通过将注入混合谐波的高频共模环流与方波高频共模电压相结合,抑制子模块电容电压脉动并降低桥臂电流开关应力和系统损耗。同时,还引入了附属电压能量控制,实现了三相桥臂能量的均衡控制,简化了额外的环流控制器,改善系统的稳定性。最后通过实验验证了所提控制策略的可行性和有效性。  相似文献   

5.
模块化多电平型变流器电容电压波动及其抑制策略研究   总被引:2,自引:0,他引:2  
以模块化多电平变流器(Modular Multilevel Converter,MMC)上下桥臂的功率流动和能量波动为出发点,得到模块化多电平变流器上下桥臂子模块电容电压波动的数学模型。分析子模块电压波动与MMC传输功率、内部环流等物理量之间的关系。提出通过控制MMC内部环流的二次分量来抑制子模块电容电压波动的控制策略,通过测量相电流瞬时值和相电压调制值得到内部环流参考值,引入准比例谐振(Proportional-Resonant,PR)控制器进行环流闭环控制从而抑制子模块电容电压波动。该控制策略无需坐标变换,无交叉耦合项,简化了控制器的设计。仿真表明,在保持子模块电容大小不变的前提下,该控制策略能有效抑制子模块电容电压的波动,改善MMC输出的交流电压波形质量。  相似文献   

6.
模块化多电平换流器(modular multilevel converter,MMC)作为大容量风电机组背靠背变频器具有良好前景,但机侧MMC运行时面临低频工况下子模块电容电压波动幅度大的难题。本文提出一种复合的二倍频环流叠加高频注入策略,通过二倍频环流注入抑制大量电容电压的二倍频纹波,并在此之上叠加高频注入进一步提高低频工况上下桥臂能量交换速度,达到大幅度降低子模块电容电压波动的目的。最后在PSCAD/EMTDC仿真平台搭建仿真模型对所提策略的有效性进行验证。仿真结果显示,二倍频环流注入可抑制44.19%的电容电压波动,叠加高频电压和高频环流注入后可进一步抑制51.6%的电容电压波动,在相同的电压波动要求下降低了对子模块电容容值的需求。所提策略在风速突变下和并网点发生暂态故障期间仍具有有效性,适用于大规模海上风电并网等场景。  相似文献   

7.
模块化多电平变换器(MMC)运行于低频工况时,子模块电容电压波动比较剧烈会导致输出畸变,甚至导致系统无法正常运行。为解决这一问题,基于高频方波注入法和传统电容电压波动抑制方法,提出一种奇数次高频注入法,即在调制波中按一定比例叠加奇数次高频零序电压,相应地在三相环流中叠加相应频次的高频环流。所提方法较高频方波注入法更容易实现,相比高频正弦电流注入法又能在改善电容电压波动抑制效果的前提下减小高频环流和桥臂电流,降低开关器件电流容量和系统损耗。最后,通过实验验证了所提控制方法的可行性与有效性。  相似文献   

8.
为了解决模块化多电平换流器在运行时,子模块电容电压波动较大会导致输出发生畸变,甚至影响系统稳定的问题,通过对桥臂进行能量分析,发现子模块电压电容波动中主要包含基频波动和二倍频波动,其中基频波动占主要成分,为了降低子模块电容电压波动,提出一种基于二倍频环流注入结合高频环流和高频输出电压注入降低子模块电容电压基频波动的方法,该方法首先通过注入二倍频环流减小桥臂能量中的基频功率,然后利用注入的高频环流和高频输出电压共同作用进一步减小桥臂基频功率,从而达到降低子模块电容电压基频波动的目的.最后通过搭建仿真电路,对比了未进行波动抑制、仅注入二倍频环流、注入二倍频环流结合注入高频环流和高频输出电压三种情况下的电容电压波动,并进行了有关谐波分析,验证了该方法的有效性.  相似文献   

9.
针对模块化多电平变换器(MMC)运行在变频调速状态下子模块电容电压存在剧烈波动、桥臂电流及输出电流存在严重畸变的问题,提出一种基于准比例谐振(PR)控制器环流控制的MMC变频运行控制策略,该策略从桥臂能量出发,通过将引入的高频共模电压和定义的高频共模电流与桥臂能量的平均控制和均衡控制相结合,实现了减弱子模块电容电压波动的目的,同时,还引入了基于准PR控制器的环流控制策略,改善系统的稳定性。最后,通过实验验证了所提控制策略的可行性和有效性。  相似文献   

10.
针对模块化多电平变流器(MMC)应用于6 k V/10 k V高压电力传动系统中存在低频电压波动问题。分析建立了MMC拓扑数学模型及其多电平工作机制,重点推导了各桥臂子模块电容电压波动规律,并指出MMC拓扑应用于高压风机、水泵等调速领域的可行性。在此基础上,提出了一种基于高压高频信号注入的MMC多电平变换器低频调制方法,搭建了1台3.2 k W的MMC实验样机进行方法的可行性与高效性验证,实验结果表明所提方法可以有效地降低MMC拓扑桥臂电容电压波动,提升MMC拓扑电机负载的低频段运行性能。  相似文献   

11.
在MMC的阀级控制中,传统的子模块计算方法通常忽略了电容电压瞬时值的波动而直接以稳态平均值为基准来计算相应时刻的投入子模块数.这种近似的计算方法使桥臂中的实际投入子模块数与系统期望子模块数之间存在一定的偏差,从而引起桥臂电压与系统期望电压之间的偏差.此时,整个MMC系统为了实现电压与能量的平衡,便会产生桥臂环流的交流分量并通过桥臂电感补偿上述不平衡电压.桥臂环流的交流分量虽然只存在于MMC的内部并不影响MMC的外部输出特性,但其出现增加了MMC的桥臂电流有效值、开关电流应力、功率损耗以及波动,降低了MMC的性能,因此实际应用中通常需要对其进行抑制.鉴于此,在不增加硬件设备、测量环节以及附加控制器的前提下,从阀级控制系统中的子模块投入数目计算环节入手,提出了一种基于对MMC桥臂子模块电容电压精确计算的环流交流分量抑制方法.该方法工程实现简单,不依赖于任何调制策略,适用于任意相的MMC换流器,在实现环流抑制、提高MMC稳定可靠性的同时具有良好的应用经济性.基于Matlab/Simulink的模型验证了所提方法的正确性与有效性.  相似文献   

12.
模块化多电平换流器(MMC)应用于电机低频驱动时会工作于低频低输出电压状态,采用传统的对称控制方式时,因受直流侧高压影响会产生较大的电容电压波动。为此,提出一种非对称控制方式,使一桥臂不产生输出电流,另一桥臂承担几乎所有的输出电流。该方法中MMC不需要任何其他的功率交换技术,例如在低频/低压情况下通常采用的高频注入方法,以抑制电容电压的波动。详细讨论了非对称控制方法的实现过程、桥臂间的功率控制以及该方法的优缺点,仿真及实验结果表明,所提控制方法适用于电机20 Hz以下的驱动状态。  相似文献   

13.
赵乐  陈芳  景旭川  江友华 《电力电子技术》2021,55(9):128-130,138
针对模块化多电平换流器(MMC)子模块(SM)电容电压波动问题,提出一种注入共模电压与环流的MMC SM电压波动抑制策略.首先通过注入共模电压使系统工作在较高调制比状态,然后根据半桥MMC SM的数学模型推导出注入共模电压后的桥臂功率解析式,从减小桥臂功率波动角度提出了一种高、低次环流抑制策略,实现注入共模电压与环流的MMC SM电压波动抑制.实验结果显示该策略可有效减少SM电容电压波动幅值.  相似文献   

14.
谐振滤波型模块化多电平换流器低频控制方法   总被引:1,自引:0,他引:1  
低频运行时模块电容电压的大幅波动限制了模块化多电平换流器(modular multilevel converter,MMC)在电机驱动领域的应用,该文针对有谐振滤波电路的MMC结构,提出一种合理的低频控制方法。在分析谐振滤波电路特性的基础上,利用谐振滤波电路对相阻抗的改变,并通过参数设计,同时实现MMC额定频率运行时二倍频环流抑制和低频运行时高频环流控制电压最低。该方法无需注入频率混合及频率变化的环流,可降低环流控制器设计难度,同时相阻抗在串联谐振频率处压降最小,提高了高频共模电压的可利用范围。为实现对交直流混合环流指令的无差跟踪,引入比例–积分–谐振控制以准确抵消导致电容电压剧烈波动的无功功率交换,抑制模块电容电压的波动,同时维持模块电容电压均值的稳定,保证MMC低频运行的安全性和可靠性。最后通过实验验证了理论分析和控制方法的准确性与有效性。  相似文献   

15.
已有模块化多电平变流器(MMC)控制策略大多采用单一子模块电容电压参考给定的控制方式,存在无法分别控制不同桥臂子模块电容电压等不足。提出一种基于模型预测控制的MMC桥臂能量控制策略,通过引入桥臂能量共模分量和差模分量控制,实现各桥臂子模块电容电压的灵活控制;同时,基于MMC的暂态数学模型设计相电流及环流模型预测控制器,并引入电流误差反馈滚动优化,有效地实现了外部相电流和内部环流的解耦控制,使环流控制器具有能灵活实现环流抑制和环流注入的特性,且对系统参数不敏感。仿真结果验证了所提控制策略的正确性和有效性。  相似文献   

16.
模块化多电平变流器(MMC)凭借着诸多优势成为高电压大功率工况下的核心拓扑。但MMC变频调速系统运行于低频状态时存在桥臂能量分配不均衡、子模块电容电压波动严重等问题,不仅影响变频器全速域运行能力,甚至威胁系统安全。为解决上述问题,提出一种基于共模电压与偏置电压控制的MMC变频调速系统全速域运行方法,旨在通过控制系统各桥臂瞬时功率以快速抑制子模块电压波动。首先,构建系统数学模型,分析悬浮电容电压波动影响因素;其次,设计变频调速系统的低频控制器与在线模式切换环节;最后,为验证所提控制策略的可行性和有效性,对其进行仿真和实验的对比分析。实验结果表明,所提控制策略能有效抑制MMC变流器子模块电压波动,完成不同频段平滑切换,降低系统损耗,改善系统输出品质,提升MMC系统安全运行能力。  相似文献   

17.
模块化多电平换流器(MMC)的子模块(SM)电容电压波动问题一直受到广泛关注.为减小SM电容电压波动,首先通过注入共模电压使系统工作在较高调制比状态,然后根据半桥SM的MMC数学模型推导了注入共模电压后的桥臂功率解析式,从减小桥臂功率波动的角度提出了一种环流注入策略,并且给出了一种环流参考值计算方法.最后通过搭建的三相17电平MMC DC/AC实验平台对所提策略的有效性进行了验证,实验结果表明,所提方法可大幅减小SM电容电压波动幅值.相比于传统环流抑制策略,以环流峰值提升19%的代价使SM电容电压波动减小了 53.3%,相比于单一环流控制策略,SM电容电压波动减小了 36.4%.  相似文献   

18.
子模块故障是模块化多电平换流器(MMC)常见的一种故障类型,将故障子模块旁路后,MMC将处于桥臂不对称运行状态。为使MMC系统在子模块旁路后依然能维持稳定运行,提出一种基于桥臂能量预测的MMC子模块故障容错控制策略。首先对各时刻桥臂子模块储存的能量进行动态预测,进而求得各时刻子模块电容电压的预测值,在不用附加环流抑制控制器情况下,实现对环流中不对称基频和二倍频谐波分量的有效抑制。该策略简化了系统控制的复杂度,既适用于桥臂子模块数不对称的运行状态也适用于正常运行状态。厦门柔性直流示范工程的电磁暂态仿真结果验证了所提出的容错优化控制策略的正确性。  相似文献   

19.
基于新型模块化多电平变换器的五电平PWM整流器   总被引:2,自引:0,他引:2  
模块化多电平变换器以其结构模块化、不需要变压器以及易于扩展到高电平等优点,成为近年来研究的热点。本文针对一种新型的模块化多电平变换器拓扑研究了其悬浮电容电压波动规律。首先从半桥臂的输出功率入手,分析了其功率脉动和一个周期内的能量变化,给出了电容电压波动幅值表达式。针对电容电压在低频下波动较大的问题,提出了一种电容电压波动抑制方法。采用叠加高频零序电压和相间环流的方式重构桥臂电压和电流,通过提高半桥臂输出功率的波动频率来减小悬浮电容的能量波动幅值,进而减小电容电压波动幅值。设计了一台三相五电平的实验样机并对上述控制方法进行了实验验证。  相似文献   

20.
针对不平衡网压下模块化多电平换流器(MMC)子模块电容电压波动问题,提出一种注入共模电压与环流的MMC子模块电压波动抑制策略。首先通过注入共模电压使系统工作在较高调制比状态,然后根据半桥子模块MMC的数学模型推导出注入共模电压后的桥臂功率解析式,从而减小桥臂功率波动,实现注入共模电压与环流的MMC子模块电压波动抑制。最后通过搭建的17电平MMC实验平台对所提策略进行有效验证,实验结果显示该策略可有效减少子模块电容电压波动幅值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号