首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了二氧化铈(CeO_2)对环氧树脂膨胀阻燃材料的阻燃成炭协效作用。研究表明,二氧化铈能提高环氧树脂膨胀阻燃材料的极限氧指数,二氧化铈添加量为1%时体系阻燃性能最佳,极限氧指数从26.3%提高到28.8%。二氧化铈还能降低环氧树脂膨胀阻燃材料的初始分解温度,提高体系的高温热稳定性和成炭性能。在体系中引入二氧化铈后,将高温后残炭通过扫描电镜表征其微观结构,证明体系生成了更多的连续致密的炭层结构。拉曼光谱分析的检测结果也证明加入二氧化铈后,复合材料体系在高温煅烧后残留的炭层具有更低的ID/IG值,石墨化程度更高,炭层结构致密规整。因此适量地加入二氧化铈可以提高环氧树脂膨胀阻燃材料的阻燃性能,促进生成更加致密稳定的炭层。  相似文献   

2.
以聚苯氧基磷酸联苯二酚酯(PBPP)与聚磷酸铵(APP)组成膨胀阻燃体系(IFR),同时为提高抑烟性能将一定量蒙脱土(MMT)引入阻燃体系中。将此体系应用到环氧树脂(EP)的阻燃改性中,以间苯二胺(m-PDA)为固化剂制得阻燃改性EP材料。通过极限氧指数(LOI)、垂直燃烧(UL-94)、热重(TG/DTG)、锥形量热(CONE)和扫描电镜(SEM)分别探究了材料的阻燃性能、热降解行为、燃烧行为以及微观形貌。结果表明:5%IFR+1%MMT(wt,质量分数,下同)的阻燃剂可使EP达到UL 94V-0级;10%IFR+1%MMT可将极限氧指数提高到29.2%;同时,改性EP的燃烧性能得到很大提高,平均热释放速率(AvHRR)下降了52.0%,热释放速率峰值(PkHRR)下降了33.2%,总烟产生量(TSP)下降了70.0%;炭层形态研究显示,改性后的EP燃烧后能形成致密、封闭的炭层,能有效阻碍热量释放与烟雾扩散。  相似文献   

3.
应用聚磷酸铵(APP)对苯并噁嗪(BOZ)树脂及玻璃纤维(GF)/BOZ复合材料进行了阻燃改性,结合热分析和微观形貌分析等研究了材料的阻燃机制。结果表明:APP可以明显提高BOZ树脂的阻燃性能,随APP含量的提高,树脂体系的极限氧指数逐渐提高,添加量为3wt%时可使BOZ树脂的极限氧指数从基体的31.5%提高到34.5%,并达到UL 94V-0级。APP的加入使改性树脂体系的分解温度前移,玻璃化转变温度略有下降,改性树脂体系固化反应提前,反应过程变得缓和。APP的加入使GF/BOZ复合材料的阻燃性能进一步提高,10wt%GF/APP-BOZ复合材料的极限氧指数从GF/BOZ的51.0%提高到57.7%。微观形貌分析表明:APP的加入使APP-BOZ改性树脂及GF/APP-BOZ复合材料燃烧后生成更为致密的炭层,从而使材料的阻燃性能得到提高。  相似文献   

4.
采用二乙基次磷酸铝(AlPi)复配超支化三嗪大分子成炭剂(EA)对聚对苯二甲酸丁二醇酯(PBT)进行无卤阻燃改性。通过氧指数、UL-94垂直燃烧及锥形量热测试研究了阻燃体系的阻燃性能,通过热失重分析(TGA)研究了复配阻燃体系的热性能,采用扫描电镜(SEM)观察阻燃体系燃烧炭层的形貌。研究表明,AlPi与EA复配比例为7∶3时阻燃效果最好,材料氧指数达到34.6%,通过UL-94V-0级,热释放速率峰值(PHRR)降低至653kW/m2;热重分析表明,复配阻燃体系的加入促进了PBT的提前分解成炭,增加了阻燃PBT的残炭量;燃烧炭层扫描电镜说明,复配阻燃体系能形成连续致密的膨胀炭层,提高阻燃效果。  相似文献   

5.
将无卤膨胀阻燃剂六(4-DOPO羟甲基苯氧基)环三磷腈(DOPOMPC)、聚磷酸铵(APP)及多壁碳纳米管(MWCNTs)复配后加入环氧树脂(EP)中,制备出新型阻燃复合材料DOPOMPC-APP-MWCNTs/EP。通过极限氧指数(LOI)、水平垂直燃烧和锥形量热法研究其阻燃性能。研究结果表明:MWCNTs的加入增强了膨胀阻燃体系的阻燃性能和力学性能,并在一定程度上改善了体系燃烧时的浓烟现象。当阻燃体系总质量分数为20%,MWCNTs质量分数为2%时,材料性能最优,其LOI达到36.8%,热释放速率峰值、有效燃烧热平均值、比消光面积平均值和CO释放率平均值与未阻燃EP相比分别下降了83.5%、31.5%、47.6%、50.0%,与DOPOMPCAPP/EP相比下降了83.5%、77.7%、83.7%、68.9%。SEM分析表明:添加MWCNTs后,燃烧炭层呈现出大面积交联网络状结构。  相似文献   

6.
氧化铋在膨胀阻燃聚丙烯体系中的催化协效作用   总被引:3,自引:0,他引:3  
将聚磷酸铵(APP)和双季戊四醇(DPER)膨胀型阻燃剂应用于聚丙烯(PP)的阻燃,并加入少量氧化铋(Bi2O3)。采用极限氧指数、烟密度和热分析等表征其阻燃性能。结果表明,加入少量的Bi2O3(0.1%质量分数,下同),可以提高体系的氧指数,降低体系的烟密度。热失重分析表明,Bi2O3加入可以使APP生成更多的固相残留物,催化膨胀阻燃剂交联成炭,高温时残炭增加,阻燃体系的最大热失重速率对应温度后移。同时热老化实验表明,Bi2O3的加入没有加快体系热老化的现象。  相似文献   

7.
以膨胀型阻燃剂(IFR)和自制的有机蒙脱土(OMMT)协同阻燃剂对线型低密度聚乙烯(LLDPE)进行阻燃改性,研究了阻燃剂和协同阻燃剂对LLDPE燃烧性能、力学性能的影响。运用极限氧指数(LOI)和热重分析(TGA)表征了LLDPE的阻燃性能,通过扫描电子显微镜(SEM)观察燃烧残余物的炭层形貌。结果表明,OMMT的加入增强了LLDPE/IFR体系的阻燃性能和力学性能,且在一定程度上解决了体系燃烧时的熔滴和浓烟现象;当IFR用量为30份,有机蒙脱土用量为2%时,体系的极限氧指数达到25.2%,燃烧残余物形成致密的炭层。  相似文献   

8.
通过在涂层体系中用无卤阻燃高残炭环氧树脂(EP-DOPO)替代普通环氧树脂(EP)的方法,确定了无卤阻燃高残炭环氧树脂在环氧膨胀型防火涂料中的作用,并明确最佳用量。分别添加不同比例的无卤阻燃高残炭环氧树脂,研究这种情况下环氧膨胀型防火涂料各项性能及膨胀炭层的结构。结果表明:无卤阻燃高残炭环氧树脂可明显改善环氧膨胀型防火涂料的烟密度、炭层结构,同时可以明显提高发泡炭层的柔韧性及致密性,EP-DOPO/EP为40/60时涂层综合性能达最优。  相似文献   

9.
合成出新型单组份磷-氮膨胀型阻燃剂2-环季戊四醇磷酸酯-4,6-对氨基苯磺酸钠均三嗪(CTOB),通过FT-IR,1H NM R和31P NM R对其结构进行表征。以CTOB与有机蒙脱土(OM M T)为原料,制备出阻燃型CTOB/OM M T/Nylon 6复合材料。热重分析表明:CTOB和OMMT的加入能有效提高尼龙6的热稳定性能和成炭性能,通过极限氧指数(LOI)、锥形量热、垂直燃烧实验(UL-94)和TGA对CTOB/OMMT/Nylon 6复合材料的阻燃性能进行研究。结果表明,CTOB和OMMT在尼龙6中表现出良好的协同阻燃效果,CTOB/OMMT/Nylon 6的氧指数可达28.0%,垂直燃烧性能达到UL-94 V-0级,阻燃后的尼龙6其PHRR和THR分别下降了65.7%和49.3%。CTOB/OMMT/Nylon 6燃烧后,表面可生成致密性良好的膨胀炭层,膨胀炭层的形成是有效提高Nylon 6阻燃性能的关键因素。  相似文献   

10.
以阻燃齐聚物(PSPTR)和酚醛树脂(PF)作为膨胀型阻燃剂(IFR)阻燃丙烯晴-丁二烯-苯乙烯共聚物(ABS), 通过极限氧指数(LOI)和水平垂直燃烧(UL-94)测试研究了阻燃PSPTR-PF/ABS体系的阻燃性能。研究表明, 当PSPTR:PF=1:1(质量比), 总质量分数为30%时, 体系的LOI为28.2%, UL-94达V-1级别。采用热重-红外联用(TG-IR)技术探索了阻燃体系的热性能和热分解历程, 发现PSPTR-PF阻燃剂的加入延缓了ABS的热分解, 提高了ABS的热稳定性能。采用SEM、 XRD和Raman光谱分析了燃烧炭层的形貌和结构。结果表明, PF不仅改善了炭层的致密度, 而且完善了炭层的石墨结构, 最终提高了ABS的阻燃性能。  相似文献   

11.
采用热失重、极限氧指数、锥形量热研究了以受阻胺(NOR116)和分子筛为协效剂,与聚磷酸铵(APP)/季戊四醇(PER)在聚丙烯基体中的热降解行为及协同阻燃性;并用拉曼光谱和扫描电镜分析了残炭的结构和形貌,进一步研究了其协同阻燃机理。结果表明,NOR116/分子筛协效阻燃体系可明显提高极限氧指数并改善燃烧时熔滴缺陷,显著降低热释放速率、烟释放速率;NOR116可有效提高PP的初始分解温度及最大分解速率温度,使膨胀阻燃体系后期的交联成炭及气体释放更加匹配;在燃烧过程中分子筛与膨胀阻燃体系形成了Si-P-Al-C的结构,可有效稳定炭层;拉曼光谱及扫描电镜结果表明,NOR116和分子筛可促进膨胀阻燃体系形成致密且高石墨化程度的炭层,有效阻隔了氧气的进入及热的反馈。  相似文献   

12.
采用过氧化氢制备羧基再生亚麻纤维素,通过红外光谱、核磁共振、X射线衍射和热重分析表征产物的结构与性能,研究表明再生亚麻纤维素上的C6伯羟基被选择性地氧化为羧基,而且氧化再生亚麻纤维素随着羧基含量的增加,其热稳定性下降。将其作为成炭剂,并与酸源、气源复配组成膨胀型阻燃剂(IFR)用于阻燃环氧树脂,通过极限氧指数测试(LOI)和垂直燃烧测试(UL-94)表征阻燃性能。研究表明,膨胀型阻燃剂的加入能有效地提高环氧树脂的阻燃性能。与EP/MFAPP/PER复合材料的LOI相比,EP/MFAPP/OLF27.4和EP/MFAPP/OLF34.5复合材料的LOI更高,MFAPP/OLF体系的阻燃效果比MFAPP/PER体系要好,这是因为MFAPP/OLF体系的催化成炭效果更好,样品表面生成的防护性炭层,起到了阻隔热量和氧气的作用并抑制了可燃性气体的释放。  相似文献   

13.
含硅化合物与膨胀阻燃剂协同阻燃聚丙烯   总被引:3,自引:0,他引:3  
采用聚磷酸铵(APP)与季戊四醇(PER)复合膨胀阻燃剂(IFR)阻燃聚丙烯,研究了不同含硅物质——硅胶(SG)、硅酮(GM)以及硅晶(SW)纤维对IFR阻燃PP性能的影响,并通过LOI、UL-94、TGA对材料阻燃性能进行了表征。结果表明,三种物质与IFR都存在一定的协同效应。然而,硅胶与IFR的协同效应最好,在IFR含量为25%时,添加2%的硅胶,材料氧指数由29提高至35,UL-94也提高至V-0级,材料的高温热稳定性也得到了极大提高,并且能够生成结构更加致密的炭层。  相似文献   

14.
研究了六硅酸镁对膨胀阻燃聚丙烯的协同效应。采用熔融共混法制备了一系列不同配比的六硅酸镁(MS3)/膨胀型阻燃剂(IFR)/聚丙烯(PP)复合材料;通过氧指数、锥形量热测试、热失重分析评价了复合材料的燃烧性能和热稳定性,采用扫描电子显微镜表征了残炭微观结构。发现添加1%的六硅酸镁,膨胀阻燃体系的氧指数由38.1提高至42.0,增加了10.2%,热释放速率峰值和总释热量分别降低了72kW/m2和11 MJ/m2,700℃炭层残留量由6.3%提高至12.5%,膨胀炭层的致密性和完整性显著提高,残炭量显著增加,阻燃和热稳定性显著增强。  相似文献   

15.
以阻燃齐聚物(PSPTR)和酚醛树脂(PF)作为膨胀型阻燃剂(IFR)阻燃丙烯晴-丁二烯-苯乙烯共聚物(ABS),通过极限氧指数(LOI)和水平垂直燃烧(UL-94)测试研究了阻燃PSPTR-PF/ABS体系的阻燃性能.研究表明,当PSPTR:PF=1∶1(质量比),总质量分数为30%时,体系的LOI为28.2%,UL-94达V-1级别.采用热重-红外联用(TG-IR)技术探索了阻燃体系的热性能和热分解历程,发现PSPTR-PF阻燃剂的加入延缓了ABS的热分解,提高了ABS的热稳定性能.采用SEM、XRD和Raman光谱分析了燃烧炭层的形貌和结构.结果表明,PF不仅改善了炭层的致密度,而且完善了炭层的石墨结构,最终提高了ABS的阻燃性能.  相似文献   

16.
研究了复合金属氧化物(LDHO)对膨胀阻燃聚丙烯体系(PP/IFR)的协效作用。以层状复合氢氧化物(LDH)为前驱物通过焙烧法制备了2种LDHO,分别为镁铝LDHO(MgAl-LDHO)、镁铝铁LDHO(MgAlFe-LDHO),并通过X射线衍射对LDH和LDHO进行了表征,采用熔融共混法制备了PP/IFR/LDHO复合材料,通过极限氧指数(LOI)、UL94垂直燃烧、锥形量热等方法考察了复合材料的阻燃性能。结果表明,2种LDHO均可以提高PP/IFR体系的氧指数,并使最高热释放速率(PHRR)大幅度降低,其中MgAl-LDHO可使PHRR降低71%;热重分析表明,LDHO的加入提高了PP/IFR体系的分解温度及残炭在高温区的热稳定性,从而提高了体系热稳定性能。采用扫描电镜观察了残炭的形貌结构,发现添加LDHO后炭层更加致密、坚实,表明通过改善PP/IFR炭层的质量,LDHO起到了协效阻燃的作用。  相似文献   

17.
将单分子膨胀阻燃剂2,4,6-三(2,4-二(5,5-二甲基-1,3-二氧环杂己内磷酰氧基)苯基)-1,3,5-三嗪(TDDMDOBT)与聚磷酸铵(APP)组成的膨胀阻燃体系应用于环氧树脂(EP)的阻燃改性,同时为改善其烟毒性及力学性能的缺陷,将CuO引入到阻燃体系的最优配方(EP5)中,制得阻燃改性EP材料。结果表明,CuO协同体系中综合性能最优的材料为EP31(m(TDDMDOBT-APP)/m(CuO)/m(EP)=19/1/80),该材料的氧指数为50%,材料难燃性显著增加;在热重分析中,材料的最高释热速率与EP5、纯环氧树脂(EP0)相比分别降低了70.1%,98.2%,说明EP材料在外界辐射热源下的稳定性显著提高;在锥形量热测试中,EP材料较EP5、EP0的平均比消光面积分别下降了77.5%,70.3%,抑烟效果良好;扫描电镜观察发现,EP31受热能够生成以纳米粒子为节点的交联状结构的炭层,炭层致密、成炭量大,成炭效果良好;材料的冲击强度、拉伸强度、弯曲强度及断裂伸长率分别比EP0提高了39.7%,23.9%,96.2%,49.8%,材料力学性能得到了良好改善。  相似文献   

18.
制备了聚磷酸铵(APP)/可膨胀石墨(EG)复配阻燃的硬质聚氨酯泡沫塑料,并分析了复配阻燃剂对其氧指数、烟密度、炭层形貌以及力学性能的影响。结果表明:当APP∶EG为1∶3时,各添加量下的氧指数均达到最高,最高可达35.5%;APP的加入可明显改善EG烟密度大的缺点,且APP生成的紧密炭层将EG生成的蠕虫状炭层固定在材料内部;随着复配阻燃剂的加入泡沫压缩性能提高,冲击性能下降。  相似文献   

19.
研究了复合金属氧化物(LDHO)对膨胀阻燃聚丙烯体系(PP/IFR)的协效作用。以层状复合氢氧化物(LDH)为前驱物通过焙烧法制备了2种LDHO,分别为镁铝LDHO(MgAl-LDHO)、镁铝铁LDHO(MgAlFe-LDHO),并通过X射线衍射对LDH和LDHO进行了表征,采用熔融共混法制备了PP/IFR/LDHO复合材料,通过极限氧指数(LOI)、UL94垂直燃烧、锥形量热等方法考察了复合材料的阻燃性能。结果表明,2种LDHO均可以提高PP/IFR体系的氧指数,并使最高热释放速率(PHRR)大幅度降低,其中MgAl-LDHO可使PHRR降低71%;热重分析表明,LDHO的加入提高了PP/IFR体系的分解温度及残炭在高温区的热稳定性,从而提高了体系热稳定性能。采用扫描电镜观察了残炭的形貌结构,发现添加LDHO后炭层更加致密、坚实,表明通过改善PP/IFR炭层的质量,LDHO起到了协效阻燃的作用。  相似文献   

20.
通过水热法对木质素(Lig)进行改性制得了羟甲基化木质素(Lig-OH),热重分析(TGA)发现Lig-OH具有较好的热稳定性能和成炭能力。将Lig-OH作为成炭剂,与聚磷酸铵(APP)、季戊四醇(PER)复配用于制备膨胀阻燃聚丙烯(PP)复合材料。借助极限氧指数仪、UL-94垂直燃烧仪、TGA和锥形量热仪等分别对阻燃PP复合材料的阻燃性能、热稳定性能、燃烧行为等进行了研究。结果表明,当阻燃剂总量为30%,APP/PER/Lig-OH三者质量比为6∶3∶1时,阻燃PP复合材料Lig-OH-IFR/PP的极限氧指数(LOI)值高达33%,且垂直燃烧UL-94过V-0级别,明显优于同等条件下含木质素膨胀阻燃PP。Lig-OH-IFR/PP在空气气氛中具有良好的高温稳定性能,Tmax1较含Lig膨胀阻燃PP提高了近20℃,且800℃残留量增加了1倍多;锥形量热仪测试结果分析可知,Lig-OH的引入能够有效降低PP的热释放速率,减少火灾危险;残炭结构与形貌的分析结果显示,Lig-OH-IFR/PP所形成炭层的石墨化程度更高,且炭层更加致密完整。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号