首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Prevalence of skin lesions was investigated among 752 participants in eight villages in Kurdistan province in Iran with emphasis on total lifetime intake of arsenic from drinking water (TLIA). The participants were selected from eight villages with different exposure levels using a cluster-sampling technique. TLIA was calculated for each individual taking into account the type of water supply and their mean annual arsenic concentration. The study showed that 49 persons (6.5%) were suffering from hyperkeratosis and 20 persons (2.7%) from hyperpigmentation. The correlation between hyperkeratosis and hyperpigmentation was significant (R=0.325, p<0.01). Using the logistic regression model it was found that the relationship between TLIA and hyperkeratosis (OR=1.14, 95% CI=1.039-1.249), and hyperpigmentation (OR=1.254, 95% CI=1.112-1.416) was also significant. In conclusion, TLIA can be applied as a reliable indicator for the assessment of exposure.  相似文献   

2.
Organic arsenic removal from drinking water   总被引:2,自引:0,他引:2  
Arsenic occurs in both inorganic and organic forms in water. Although various methods have been adopted to remove inorganic species of arsenic from drinking water, not much emphasis has been given to the removal of organic species of arsenic. In the present study column studies were conducted using manganese greensand (MGS), iron oxide-coated sand (IOCS-1 and IOCS-2) and ion exchange resin in Fe3+ form, to examine the removal of organic arsenic (dimethylarsinate) spiked to required concentrations in tap water. Batch studies were conducted with IOCS-2, and the results showed that the organic arsenic adsorption capacity was 8 μg/g IOCS-2. Higher bed volumes (585 BV) and high arsenic removal capacity (5.7 μg/cm3) were achieved by the ion exchange resin among all the media studied. Poor performance was observed with MGS and IOCS-1.  相似文献   

3.

Background

Chronic arsenic exposure is associated with a variety of diseases, including cancer, peripheral vascular disease, and diabetes. However, its association with cerebrovascular diseases (CVD) has not yet been resolved. The aim of this study is to explore this association in Taiwan using nation-wide data.

Materials and methods

We analyzed mortality data in Taiwan from 1971 to 2005 and choose two geographic areas with populations suffering from chronic exposure to arsenic in drinking water for study, the blackfoot disease endemic area (BFDEA) in the southwest and Lan-Yang Basin (LYB) in the northeast parts of Taiwan. The Chia-Yi and Tainan Counties, which surround the BFDEA, and the nation of Taiwan as a whole were used as reference populations. Direct standardized mortality rates and gender-specific indirect standardized mortality ratios (SMRs) were calculated for the four populations.

Results

The direct standardized mortality rate for CVD in Taiwan decreased from 2.46/103 person-year in 1971 to 0.63/103 person-year in 2005, and women had significantly lower mortality than men (SMR = 0.80; p < 0.05). The CVD mortality rates of populations with chronic arsenic exposure were significantly higher than the reference populations (SMR ranging from 1.06 to 1.09 in men and 1.12 to 1.14 in women; p < 0.05). The BFDEA had higher CVD mortality rates than the LYB, with SMR = 1.05 (p < 0.05) in men and SMR = 1.04 (p = 0.05) in women.

Conclusion

In Taiwan, while CVD mortality decreased in both genders between 1971 and 2005, chronic arsenic exposure from drinking water was associated with increased risks of CVD.  相似文献   

4.
Inhalation exposure to THMs from drinking water in south Taiwan   总被引:4,自引:0,他引:4  
Trihalomethanes (THMs) are important disinfection byproducts (DBPs) in drinking water. To understand the magnitude of exposure to THMs for the people in southern Taiwan, models are used to estimate the inhalation exposure associated with drinking water based on raw water quality. Two parts of models are used in this study, one for estimating THM concentration from raw water quality, and one for estimating inhalation exposure to people. Important raw water quality and operational parameters, including TOC, UV254, pH, temperature, chlorine dosage, and water residence time of a major water treatment plant in south Taiwan were collected. An empirical THM formation model was then employed to predict the THM concentration at consumers' dwellings based on the parameters collected. Differences between the predicted results and experimental data were found to be small, indicating that the model is appropriate. The predicted THM concentration distribution was served as input parameters for the exposure models. Three major scenarios associated with probable inhalation exposure of THMs, including shower, pre- and post-cooking activities, and cooking processes, were considered in the exposure models. The model results show that the mean inhalation exposure of THMs for shower, pre- and post-cooking activities, and cooking processes are 26.4, 1.56, 3.29 micrograms/day, respectively. The total inhalation exposure (summation of the three scenarios) was found to be comparable with that for direct ingestion, indicating that inhalation is an important pathway for THM exposure from drinking water.  相似文献   

5.
Arsenic is a potent environmental pollutant that has caused one of the largest public health poisonings in the history of human civilization, affecting tens of millions of people worldwide especially in Bangladesh. Lactate dehydrogenase (LDH) in blood plays an important role in predicting cell or organ damage and as an important clue to the diagnosis of a variety of cancers. However, effect of chronic arsenic exposure on the LDH level in blood has not yet been documented. Since the chronic arsenic exposure is associated with organ damages and multi-site cancers, this research aimed at assaying the plasma level of LDH activity in the population who were exposed to arsenic chronically in Bangladesh. A total of 185 individuals living in arsenic-exposed areas and 121 individuals living in non-exposed area in Bangladesh were recruited as study subjects. Arsenic content in drinking water, hair and nails were estimated by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) and LDH activity was assayed by a spectrophotometer. Significant increase in LDH activity was observed with increasing concentrations of arsenic in water, hair and nails. Further, the study subjects were split into four groups based on the three ways of each exposure metrics (water, hair and nail arsenic concentrations) where the study subjects in the non-exposed area were used as a reference (lowest exposure) group. LDH activity was found to be increased in the higher exposure groups of water and hair arsenic concentrations. LDH activity was also increased at low to medium exposure groups of nail arsenic concentrations.Thus, the elevated plasma LDH activity might be helpful for the early prognosis of organ or tissue damage in the individuals who were exposed to arsenic chronically.  相似文献   

6.
Exposure to arsenic through drinking water poses a threat to human health. Electrocoagulation is a water treatment technology that involves electrolytic oxidation of anode materials and in-situ generation of coagulant. The electrochemical generation of coagulant is an alternative to using chemical coagulants, and the process can also oxidize As(III) to As(V). Batch electrocoagulation experiments were performed in the laboratory using iron electrodes. The experiments quantified the effects of pH, initial arsenic concentration and oxidation state, and concentrations of dissolved phosphate, silica and sulfate on the rate and extent of arsenic removal. The iron generated during electrocoagulation precipitated as lepidocrocite (γ-FeOOH), except when dissolved silica was present, and arsenic was removed by adsorption to the lepidocrocite. Arsenic removal was slower at higher pH. When solutions initially contained As(III), a portion of the As(III) was oxidized to As(V) during electrocoagulation. As(V) removal was faster than As(III) removal. The presence of 1 and 4 mg/L phosphate inhibited arsenic removal, while the presence of 5 and 20 mg/L silica or 10 and 50 mg/L sulfate had no significant effect on arsenic removal. For most conditions examined in this study, over 99.9% arsenic removal efficiency was achieved. Electrocoagulation was also highly effective at removing arsenic from drinking water in field trials conducted in a village in Eastern India. By using operation times long enough to produce sufficient iron oxide for removal of both phosphate and arsenate, the performance of the systems in field trials was not inhibited by high phosphate concentrations.  相似文献   

7.
The use of a synthetically prepared clay material, hydrotalcite (HT), for the removal of arsenite (As(III)) and arsenate (As(V)) from drinking water is described. Percolation through HT of water containing 500-1000 microg/L As (levels often found in As-contaminated well water) produced leachate with As levels well below 10 microg/L. The technology could be coupled to that used in less-developed regions for removing organisms from drinking water, viz. leaching through porous pots and filter candles. The 'spent' HT is easily converted into valuable phosphatic fertilizer that would have an insignificant effect on soil arsenic levels, thereby reducing the overall cost of manufacture and distribution.  相似文献   

8.
In this study, As leaching from five arsenic bearing solid residuals (ABSRs) comprised of the iron hydroxide adsorbent Bayoxide E33 used in long-term operations was evaluated in leaching trials using California Waste Extraction Test (CalWET) and Toxicity Characteristic Leaching Protocol (TCLP) leachate solutions, a landfill leachate (LL), and synthetic leachate (SL). The initial As loading of the media, which reflects the influence of source water chemistry and varying treatment conditions at the point of removal, strongly influenced the magnitude of As release. The chemical composition of the leachate also influenced As release and demonstrated the relative importance of different release mechanisms, namely media dissolution, pH-dependent sorption/desorption, and ion exchange. The CalWET solution, which partially dissolved the iron-based media, resulted in 100 times more As release than did the TCLP solution, which did not dissolve the media. The LL had a higher pH than the TCLP solution, and even though its organic carbon content was lower it tended to release more As. Tests with the SL were conducted to determine the influence of variations in leachate pH, phosphate, bicarbonate, sulfate, silicate, and natural organic matter (NOM). Release increased at high pH, in the presence of high concentrations of phosphate and bicarbonate, and in the presence of high NOM concentrations. For pH, this reflects the pH-dependence of sorption reactions, whereas for the anions and NOM, direct competition appeared important. Similar to the CalWET solution, excess NOM dissolved portions of the media thereby facilitating As release. In general, our results suggest that estimating As release into landfills will remain a challenge as it depends upon As loading, which reflects site-specific properties, and the composition of the leachate, which varies from landfill to landfill.  相似文献   

9.
A model denominated Consumption Habit Exposure Model, (CHEM), was developed for the calculation of human individual acute and chronic exposure to copper in drinking water. The model can estimate daily exposure of individuals as well as the maximum concentration of copper which individuals ingest during a 24-h period. The CHEM model requires carrying out a water consumption habit questionnaire and measuring the minimum and maximum concentration of copper in homes, as well as minimum and random copper concentration at work and study places. The case study employed was a representative sample of the population of Santiago, Chile. The validation of the model was established with reference to the application in a limited number of homes of the composite proportional method, (CPS), used to measure human chronic ingestion of contaminants from drinking water. It was found that 4.5% of the sampled population is exposed daily to one cup of water or more at the maximum copper concentration available at the tap. The probabilities that the different age groups are exposed to one cup or more of water at cMAX during 1 day are greater for the 20-64-year-old group, followed by the 64-year-old group, and then by the younger age groups in descending order. Ingestion of copper from drinking water by the population of Santiago is on average 9.0% of the World Health Organization recommendations for minimum total ingestion of copper for adults, assuming that 100% of the copper contained in drinking water is absorbed.  相似文献   

10.
A Chitosan/chitin mixture was studied as a potential agent for the removal of arsenic (V) from ground waters. The arsenic concentration of contaminated waters was lowered to levels accepted by the Canadian Department of Health and Welfare and the World Health Organization upon treatment with the mixture and, furthermore, the copper and sulfate levels were also reduced. The capacity of the mixture at pH 7 was found to be 0.13 μ-equiv As g−1 mixture with a distribution coefficient of 65. The interaction between arsenic and these polymers is also discussed.  相似文献   

11.
Our field studies show that indoor air concentrations of volatilized trichloroethylene (TCE) can be substantial when TCE-contaminated water is used domestically. Using a model shower, increases in TCE water concentrations, water temperature and drop path (time) increased the steady-state air TCE concentrations. Volatilization was incomplete and the rates were comparable to predicted ones. Indoor air models show that the inhalation route of exposure for such chemicals has the potential for being much greater than by direct ingestion. This should be considered in developing regulations to limit adverse health impacts from contaminants of potable water.  相似文献   

12.
徐胜 《山西建筑》2015,(1):131-133
介绍了原子荧光法的原理,论述了采用原子荧光法测定生活饮用水中的砷含量的实验主要仪器、试剂及仪器的工作参数,并对主要的实验步骤进行了详细分析,提出了一些实验注意事项,以供参考。  相似文献   

13.
A novel bioreactor system, consisting of two biologically active carbon (BAC) reactors in series, was developed for the simultaneous removal of nitrate and arsenic from a synthetic groundwater supplemented with acetic acid. A mixed biofilm microbial community that developed on the BAC was capable of utilizing dissolved oxygen, nitrate, arsenate, and sulfate as the electron acceptors. Nitrate was removed from a concentration of approximately 50 mg/L in the influent to below the detection limit of 0.2 mg/L. Biologically generated sulfides resulted in the precipitation of the iron sulfides mackinawite and greigite, which concomitantly removed arsenic from an influent concentration of approximately 200 ug/L to below 20 ug/L through arsenic sulfide precipitation and surface precipitation on iron sulfides. This study showed for the first time that arsenic and nitrate can be simultaneously removed from drinking water sources utilizing a bioreactor system.  相似文献   

14.
Arsenic contamination of drinking water poses serious health risks to millions of people worldwide. To reduce such risks, the United States Environmental Protection Agency recently lowered the Maximum Contaminant Level for arsenic in drinking water from 50 to 10 microgL(-1). The majority of water systems requiring compliance are small systems that serve less than 10,000 people. Current technologies used to clean arsenic-contaminated water have significant drawbacks, particularly for small treatment systems. In this pilot-scale demonstration, we investigated the use of arsenic-hyperaccumulating ferns to remove arsenic from drinking water using a continuous flow phytofiltration system. Over the course of a 3-month demonstration period, the system consistently produced water having an arsenic concentration less than the detection limit of 2 microgL(-1), at flow rates as high as 1900 L day(-1) for a total treated water volume of approximately 60,000 L. Our results demonstrate that phytofiltration provides the basis for a solar-powered hydroponic technique to enable small-scale cleanup of arsenic-contaminated drinking water.  相似文献   

15.
Iesan CM  Capat C  Ruta F  Udrea I 《Water research》2008,42(16):4327-4333
The objective of this paper is the evaluation of a hybrid inorganic/organic polymer type material based on hydrated ferric oxide (HFO), in the adsorption process of arsenic oxyanions from contaminated waters used as drinking water. The study includes rapid small-scale column tests conducted in continuous flow operation in order to assess the arsenic removal capacity in various conditions. Thus it was evaluated the influence of some competing ions like silicate and phosphate on As(V) adsorption and the influence of feed water pH in the removal process of As(V) and As(III) species. Based on the As/pH variation in time at different feed water pH (5, 7 and 9), a possible sorption mechanism that fits the experimental data was suggested. The regeneration and re-use of the hybrid adsorbent was studied in the presence and in the absence of the contaminant ions. The novel hybrid material is very selective towards arsenic oxyanions even though the presence of silica and phosphate reduces the adsorption capacity.  相似文献   

16.
In this study, a survey has been conducted during 2005-2007 on surface and groundwater arsenic (As) contamination and its impact on the health of local population, of villages located on the banks of Manchar lake, southern part of Sindh, Pakistan. We have also assessed the relationship between arsenic exposure through respiratory disorders in male subjects with drinking water and smoking cigarettes made from tobacco grown in agricultural land irrigated with As contaminated lake water. The biological samples (blood and scalp hair) were collected from As exposed subjects (100% smokers) and age matched healthy male subjects (40.2% smoker and 59.8% non smokers) belong to unexposed areas for comparison purposes. The As concentration in drinking water (surface and underground water), agricultural soil, cigarette tobacco and biological samples were determined by electrothermal atomic absorption spectrometry. The range of As concentrations in lake water was 35.2-158 µg/L (average 97.5 µg/L), which is 3-15 folds higher than permissible limit of World Health Organization (WHO, 2004). While the As level in local cigarette tobacco was found to be 3-6 folds higher than branded cigarettes (0.37-0.79 µg/g). Arsenic exposed subjects (with and without RD) had significantly elevated levels of As in their biological samples as compared to referent male subject of unexposed area. These respiratory effects were more pronounced in individuals who had also As induced skin lesions. The linear regressions showed good correlations between As concentrations in water versus hair and blood samples of exposed subjects with and without respiratory problems.  相似文献   

17.
Arsenic (As) poisoning has become a worldwide public health concern. The skin is quite sensitive to As and skin lesions are the most common and earliest nonmalignant effects associated to chronic As exposure. In 2005-2007, a survey was carried out on surface and groundwater arsenic contamination and relationships between As exposure via the drinking water and related adverse health effects (melanosis and keratosis) on villagers resides on the banks of Manchar lake, southern part of Sindh, Pakistan. We screened the population from arsenic-affected villages, 61 to 73% population were identified patients suffering from chronic arsenic toxicity. The effects of As toxicity via drinking water were estimated by biological samples (scalp hair and blood) of adults (males and females), have or have not skin problem (n = 187). The referent samples of both genders were also collected from the areas having low level of As (< 10 μg/L) in drinking water (n = 121). Arsenic concentration in drinking water and biological samples were analyzed using electrothermal atomic absorption spectrometry. The range of arsenic concentrations in lake surface water was 35.2-158 μg/L, which is 3-15 folds higher than World Health Organization [WHO, 2004. Guidelines for drinking-water quality third ed., WHO Geneva Switzerland.]. It was observed that As concentration in the scalp hair and blood samples were above the range of permissible values 0.034-0.319 μg As/g for hair and < 0.5-4.2 μg/L for blood. The linear regressions showed good correlations between arsenic concentrations in water versus hair and blood samples of exposed skin diseased subjects (R2 = 0.852 and 0.718) as compared to non-diseased subjects (R2 = 0.573 and 0.351), respectively.  相似文献   

18.
Subsurface iron and arsenic removal has the potential to be a cost-effective technology to provide safe drinking water in rural decentralized applications, using existing shallow tube wells. A community-scale test facility in Bangladesh was constructed for injection of aerated water (∼1 m3) into an anoxic aquifer with elevated iron (0.27 mmol L−1) and arsenic (0.27 μmol L−1) concentrations. The injection (oxidation) and abstraction (adsorption) cycles were monitored at the test facility and simultaneously simulated in the laboratory with anoxic column experiments.Dimensionless retardation factors (R) were determined to represent the delayed arrival of iron or arsenic in the well compared to the original groundwater. At the test facility the iron removal efficacies increased after every injection-abstraction cycle, with retardation factors (RFe) up to 17. These high removal efficacies could not be explained by the theory of adsorptive-catalytic oxidation, and therefore other ((a)biotic or transport) processes have contributed to the system’s efficacy. This finding was confirmed in the anoxic column experiments, since the mechanism of adsorptive-catalytic oxidation dominated in the columns and iron removal efficacies did not increase with every cycle (stable at RFe = ∼8). RAs did not increase after multiple cycles, it remained stable around 2, illustrating that the process which is responsible for the effective iron removal did not promote the co-removal of arsenic. The columns showed that subsurface arsenic removal was an adsorptive process and only the freshly oxidized adsorbed iron was available for the co-adsorption of arsenic. This indicates that arsenic adsorption during subsurface treatment is controlled by the amount of adsorbed iron that is oxidized, and not by the amount of removed iron. For operational purposes this is an important finding, since apparently the oxygen concentration of the injection water does not control the subsurface arsenic removal, but rather the injection volume. Additionally, no relation has been observed in this study between the amount of removed arsenic at different molar Fe:As ratios (28, 63, and 103) of the groundwater. It is proposed that the removal of arsenic was limited by the presence of other anions, such as phosphate, competing for the same adsorption sites.  相似文献   

19.
The use of population-level indices to estimate individual exposures is an important limitation of previous epidemiologic studies of disinfection by-products (DBPs). We examined exposure misclassification resulting from the use of system average DBP concentrations to estimate individual-level exposures. Data were simulated (n=1000 iterations) for 100 subjects across 10 water systems based on the following assumptions: DBP concentrations ranged from 0-99 microg/L with limited intra-system variability; water intake ranged from 0.5-2.5 L/day; 20% of subjects used bottled water exclusively; 20% of subjects used filtered tap water exclusively; DBP concentrations were reduced by 50% or 90% following filtration. DBP exposure percentiles were used to classify subjects into different exposure levels (e.g., low, intermediate, high and very high) for four classification approaches. Compared to estimates of DBP ingestion that considered daily consumption, source type (i.e., unfiltered tap, filtered tap, and bottled water), and filter efficiency (with 90% DBP removal), 48-62% of subjects were misclassified across one category based on system average concentrations. Average misclassification across at least two exposure categories (e.g., from high to low) ranged from 4-14%. The median classification strategy resulted in the least misclassification, and volume of water intake was the most influential modifier of ingestion exposures. These data illustrate the importance of individual water use information in minimizing exposure misclassification in epidemiologic studies of drinking water contaminants.  相似文献   

20.
This investigation explores the use of five‐parameter logistic curve fitting in quantifying turbidity robustness and risk scoring in clarification and filtrations stages of several surface water treatment works in the Anglian Water region of the United Kingdom. The approach taken reviews different scoring systems and addresses issues of weighting, averages and variability in robustness performance using turbidity robustness indices (TRIs). It also proposes an area‐based risk scoring profile to assess performance [relative area profile for T90 (RAP90)]. The metrics produced are considered to be a logical and rational way to help prioritise where resources for water treatment operation should be deployed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号