首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Seebeck coefficient, electrical resistivity, and thermal conductivity of Zr3Mn4Si6 and TiMnSi2 were studied. The crystal lattices of these compounds contain relatively large open spaces, and, therefore, they have fairly low thermal conductivities (8.26 Wm−1 K−1 and 6.63 Wm−1 K−1, respectively) at room temperature. Their dimensionless figures of merit ZT were found to be 1.92 × 10−3 (at 1200 K) and 2.76 × 10−3 (at 900 K), respectively. The good electrical conductivities and low Seebeck coefficients might possibly be due to the fact that the distance between silicon atoms in these compounds is shorter than that in pure semiconductive silicon.  相似文献   

2.
Chevrel-phase sulfides M x Mo6S8 (M, Cr, Mn, Fe, Ni; x: 1.3, 2.0) were prepared by reacting appropriate amounts of M, Mo, and MoS2 powders. The samples were then consolidated by pressure-assisted sintering to fabricate dense compacts. While Cr1.3Mo6S8 crystallized in a triclinic structure, Mn1.3Mo6S8, Fe1.3Mo6S8, and Ni2.0Mo6S8 crystallized in a hexagonal structure. The Seebeck coefficient, electrical resistivity, and thermal conductivity of the sintered samples were measured over the temperature range of 300 K to 973 K. All the samples exhibited a positive Seebeck coefficient. The Seebeck coefficient, electrical resistivity, and thermal conductivity of M1.3Mo6S8 (M: Cr, Mn, Fe) were almost identical and increased with temperature. However, the corresponding values and temperature dependent behavior of Ni2.0Mo6S8 were different from those of M1.3Mo6S8 (M: Cr, Mn, Fe). For Ni2.0Mo6S8, as temperature increased, the Seebeck coefficient and thermal conductivity increased while the electrical resistivity decreased. The highest value of the thermoelectric figure of merit (0.17) was observed in Cr1.3Mo6S8 at 973 K.  相似文献   

3.
The properties of Co4Sb12 with various In additions were studied. X-ray diffraction revealed the presence of the pure δ-phase of In0.16Co4Sb12, whereas impurity phases (γ-CoSb2 and InSb) appeared for x = 0.25, 0.40, 0.80, and 1.20. The homogeneity and morphology of the samples were observed by Seebeck microprobe and scanning electron microscopy, respectively. All the quenched ingots from which the studied samples were cut were inhomogeneous in the axial direction. The temperature dependence of the Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ) was measured from room temperature up to 673 K. The Seebeck coefficient of all In-added Co4Sb12 materials was negative. When the filler concentration increases, the Seebeck coefficient decreases. The samples with In additions above the filling limit (x = 0.22) show an even lower Seebeck coefficient due to the formation of secondary phases: InSb and CoSb2. The temperature variation of the electrical conductivity is semiconductor-like. The thermal conductivity of all the samples decreases with temperature. The central region of the In0.4Co4Sb12 ingot shows the lowest thermal conductivity, probably due to the combined effect of (a) rattling due to maximum filling and (b) the presence of a small amount of fine-dispersed secondary phases at the grain boundaries. Thus, regardless of the non-single-phase morphology, a promising ZT (S 2 σT/κ) value of 0.96 at 673 K has been obtained with an In addition above the filling limit.  相似文献   

4.
Thermoelectric materials are attractive since they can recover waste heat directly in the form of electricity. In this study, the thermoelectric properties of ternary rare-earth sulfides LaGd1+x S3 (x = 0.00 to 0.03) and SmGd1+x S3 (x = 0.00 to 0.06) were investigated over the temperature range of 300 K to 953 K. These sulfides were prepared by CS2 sulfurization, and samples were consolidated by pressure-assisted sintering to obtain dense compacts. The sintered compacts of LaGd1+x S3 were n-type metal-like conductors with a thermal conductivity of less than 1.7 W K−1 m−1. Their thermoelectric figure of merit ZT was improved by tuning the chemical composition (self-doping). The optimized ZT value of 0.4 was obtained in LaGd1.02S3 at 953 K. The sintered compacts of SmGd1+x S3 were n-type hopping conductors with a thermal conductivity of less than 0.8 W K−1 m−1. Their ZT value increased significantly with temperature. In SmGd1+x S3, the ZT value of 0.3 was attained at 953 K.  相似文献   

5.
The thermoelectric properties of the Zintl compound YbZn2Sb2 with isoelectronic substitution of Zn by Mn in the anionic (Zn2Sb2)2− framework have been studied. The p-type YbZn2−x Mn x Sb2 (0.0 ≤ x ≤ 0.4) samples were prepared via melting followed by annealing and hot-pressing. Thermoelectric property measurement showed that the Mn substitution effectively lowered the thermal conductivity for all the samples, while it significantly increased the Seebeck coefficient for x < 0.2. As a result, a dimensionless figure of merit ZT of approximately 0.61 to 0.65 was attained at 726 K for x = 0.05 to 0.15, compared with the ZT of ~0.48 in the unsubstituted YbZn2Sb2.  相似文献   

6.
A series of samples with nominal compositions of AgSb1−x Sn x Se2 (with x = 0.0, 0.1, 0.2, and 0.3) and AgSbSe2−y Te y (with y = 0.0, 0.25, 0.5, 0.75, and 1.0) were prepared. The crystal structure of both single crystals and polycrystalline samples was analyzed using x-ray and neutron diffractometry. The electrical conductivity, thermal conductivity, and Seebeck coefficient were measured within the temperature range from 300 K to 700 K. In contrast to intrinsic AgSbSe2, samples doped with Sn and Te exhibit apparent semiconducting properties (E g = 0.3 eV to 0.5 eV), lower electrical conductivity, and higher values of the Seebeck coefficient for a small amount of Sn (x = 0.1). Further doping leads to decrease of the thermoelectric power and increase of the electrical conductivity. In order to explain electron transport behavior observed in pure and doped AgSbSe2, electronic structure calculations were performed by the Korringa–Kohn–Rostoker method with coherent potential approximation (KKR–CPA).  相似文献   

7.
Te-doped Mg2Si (Mg2Si:Te m , m = 0, 0.01, 0.02, 0.03, 0.05) alloys were synthesized by a solid-state reaction and mechanical alloying. The electronic transport properties (Hall coefficient, carrier concentration, and mobility) and thermoelectric properties (Seebeck coefficient, electrical conductivity, thermal conductivity, and figure of merit) were examined. Mg2Si was synthesized successfully by a solid-state reaction at 673 K for 6 h, and Te-doped Mg2Si powders were obtained by mechanical alloying for 24 h. The alloys were fully consolidated by hot-pressing at 1073 K for 1 h. All the Mg2Si:Te m samples showed n-type conduction, indicating that the electrical conduction is due mainly to electrons. The electrical conductivity increased and the absolute value of the Seebeck coefficient decreased with increasing Te content, because Te doping increased the electron concentration considerably from 1016 cm−3 to 1018 cm−3. The thermal conductivity did not change significantly on Te doping, due to the much larger contribution of lattice thermal conductivity over the electronic thermal conductivity. Thermal conduction in Te-doped Mg2Si was due primarily to lattice vibrations (phonons). The thermoelectric figure of merit of intrinsic Mg2Si was improved by Te doping.  相似文献   

8.
The thermoelectric properties of cobalt-doped compounds Co x Ti1−x S2 (0 ≤ x ≤ 0.3) prepared by solid-state reaction were investigated from 5 K to 310 K. It was found that the electric resistivity ρ and absolute thermopower |S| for all the doped compounds decreased significantly with increasing Co content over the whole temperature range investigated. The increased lattice thermal conductivity of the doped compounds would imply enhancement of the acoustic velocity. Moreover, the ZT value of the doped compounds was improved over the whole temperature range investigated, and specifically reached 0.03 at 310 K for Co0.3Ti0.7S2, being about 66% larger than that of TiS2.  相似文献   

9.
The thermoelectric properties of Y-doped (1000 ppm, 2000 ppm, 3000 ppm) Mg2Si fabricated using field-activated pressure-assisted synthesis (FAPAS) have been characterized using measurements of electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) at temperatures ranging from 285 K to 810 K. The Y-doped Mg2Si samples were n-type in the measured temperature range. A first-principles calculation revealed that the Y atoms were expected to be primarily located at Mg sites. In sample doped with 2000 ppm Y, which exhibited the best electrical and thermal conductivity, the absolute value of the Seebeck coefficient increased in the temperature range of 320 K to 680 K, being higher than that of undoped Mg2Si. Moreover, this sample exhibited a higher level of electrical conductivity and a higher power factor. In addition, introduction of Y decreased the thermal conductivity appreciably, indicating that Y dopants are favorable for improving the properties of Mg2Si.  相似文献   

10.
We report on the experimental investigation of the potential of InGaN alloys as thermoelectric (TE) materials. We have grown undoped and Si-doped In0.3Ga0.7N alloys by metalorganic chemical vapor deposition and measured the Seebeck coefficient and electrical conductivity of the grown films with the aim of maximizing the power factor (P). It was found that P decreases as electron concentration (n) increases. The maximum value for P was found to be 7.3 × 10−4 W/m K2 at 750 K in an undoped sample with corresponding values of Seebeck coefficient and electrical conductivity of 280 μV/K and 93␣(Ω cm)−1, respectively. Further enhancement in P is expected by improving the InGaN material quality and conductivity control by reducing background electron concentration.  相似文献   

11.
Mg2(Si0.3Sn0.7)1−y Sb y (0 ≤ y ≤ 0.04) solid solutions were prepared by a two-step solid-state reaction method combined with the spark plasma sintering technique. Investigations indicate that the Sb doping amount has a significant impact on the thermoelectric properties of Mg2(Si0.3Sn0.7)1−y Sb y compounds. As the Sb fraction y increases, the electron concentration and electrical conductivity of Mg2(Si0.3Sn0.7)1−y Sb y first increase and then decrease, and both reach their highest value at y = 0.025. The sample with y = 0.025, possessing the highest electrical conductivity and one of the higher Seebeck coefficient values among all the samples, has the highest power factor, being 3.45 mW m−1 K−2 to 3.69 mW m−1 K−2 in the temperature range of 300 K to 660 K. Meanwhile, Sb doping can significantly reduce the lattice thermal conductivity (κ ph) of Mg2(Si0.3Sn0.7)1−y Sb y due to increased point defect scattering, and κ ph for Sb-doped samples is 10% to 20% lower than that of the nondoped sample for 300 K < T < 400 K. Mg2(Si0.3Sn0.7)0.975Sb0.025 possesses the highest power factor and one of the lower κ ph values among all the samples, and reaches the highest ZT value: 1.0 at 640 K.  相似文献   

12.
Three Ta-doped strontium titanates were prepared as potential candidates for n-type thermoelectric oxides. The purity of the polycrystalline samples of SrTi1−x Ta x O3 (x = 0.05 to 0.14) were characterized by means of powder x-ray diffraction and electron probe micro analysis (EPMA). We present the results of Seebeck coefficient, electrical conductivity, and thermal conductivity measurements performed at high temperatures.  相似文献   

13.
A mechanical alloying (MA) process to transform elemental powders into solid Pb0.5Sn0.5Te with thermoelectric functionality comparable to melt-alloyed material is described. The room-temperature doping level and mobility as well as temperature-dependent electrical conductivity, Seebeck coefficient, and thermal conductivity are reported. Estimated values of lattice thermal conductivity (0.7 W m−1 K−1) are lower than some reports of functional melt-alloyed PbSnTe-based material, providing evidence that MA can engender the combination of properties resulting in highly functional thermoelectric material. Though doping level and Sn composition have not been optimized, this material exhibits a ZT value >0.5 at 550 K.  相似文献   

14.
Polycrystalline SnO2-based samples (Sn0.97−x Sb0.03Zn x O2, x = 0, 0.01, 0.03) were prepared by solid-state reactions. The thermoelectric properties of SnO2 doped with Sb and Zn were investigated from 300 K to 1100 K. X-ray diffraction (XRD) analysis revealed all XRD peaks of all the samples as identical to the rutile structure, except for the x = 0.03 sample, which had a small amount of Zn2SbO4 as a secondary phase. We found that the power factor of the x = 0.03 sample was significantly improved due to the simultaneous increase in the electrical conductivity and the Seebeck coefficient. A power factor value of ∼2 × 10−4 W m−1 K−2 was obtained for the x = 0.03 sample at 1060 K, 126% higher than that for the undoped sample.  相似文献   

15.
Ca z Co4−x (Fe/Mn) x Sb12 skutterudites were prepared by mechanical alloying and hot pressing. The phases of mechanically alloyed powders were identified as γ-CoSb2 and Sb, but they were transformed to δ-CoSb3 by annealing at 873 K for 100 h. All specimens had a positive Hall coefficient and Seebeck coefficient, indicating p-type conduction by holes as majority carriers. For the binary CoSb3, the electrical conductivity behaved like a nondegenerate semiconductor, but Ca-filled and Fe/Mn-doped CoSb3 showed a temperature dependence of a degenerate semiconductor. While the Seebeck coefficient of intrinsic CoSb3 increased with temperature and reached a maximum at 623 K, the Seebeck coefficient increased with increasing temperature for the Ca-filled and Fe/Mn-doped specimens. Relatively low thermal conductivity was obtained because fine particles prepared by mechanical alloying lead to phonon scattering. The thermal conductivity was reduced by Ca filling and Fe/Mn doping. The electronic thermal conductivity was increased by Fe/Mn doping, but the lattice thermal conductivity was decreased by Ca filling. Reasonable thermoelectric figure-of-merit values were obtained for Ca-filled Co-rich p-type skutterudites.  相似文献   

16.
Single-phase polycrystalline La x Sr1−x TiO3 (x = 0, 0.04, 0.06, 0.08, and 0.12) ceramics were prepared by the conventional solid-state reaction method using high-activity hydroxides as the raw materials. The electrical conductivity of all the samples increased with increasing x value and decreased with measurement temperature, while the thermal conductivity decreased with increasing x value and measurement temperature. The La0.12Sr0.88TiO3 sample showed the lowest thermal conductivity of 2.45 W m−1 K−1 at 873 K and the largest ZT of 0.28 at 773 K. The present work revealed that hydroxides with high activity as raw materials are beneficial to improve the thermoelectric properties, especially to decrease the thermal conductivity.  相似文献   

17.
To optimize the thermoelectric properties of Si2Ti-type Al32Mn34Si34 (C54-phase), which possesses a large absolute Seebeck coefficient |S| exceeding 300 μV/K with negative sign, we partially substituted Cr and Fe for Mn, and succeeded in decreasing the number of valence electrons (in the case of Cr) without observing precipitation of secondary phases. A large, positive Seebeck coefficient exceeding 200 μV/K was observed for Al32Cr x Mn34−x Si34 (1 ≤ x ≤ 2.5), which consists almost solely of the C54-phase. The increase of hole concentration caused by Cr substitution for Mn was confirmed by both the reduction in electrical resistivity and the sign reversal of the Seebeck coefficient. The largest ZT-value for positive Seebeck coefficient (p-type behavior) was obtained for Al32Cr2.5Mn31.5Si34, with the resulting ZT-value reaching a magnitude twice as large as the largest ZT-value of the ternary compound Al33Mn34Si33 possessing p-type behavior.  相似文献   

18.
Thermoelectric properties of molybdenum selenides containing Mo9 clusters have been investigated between 300 K and 800 K. Ag x Mo9Se11 (x = 3.4 and 3.8) have been synthesized by solid-state reaction and spark plasma sintering. X-ray diffraction and scanning electron microscopy reveal high purity and good homogeneity of the samples. The thermoelectric power of the samples is positive over the whole investigated temperature range, indicating that the majority of charge carriers are holes. The Seebeck coefficient increases with temperature, and the temperature coefficient of the resistivity is positive. Significantly low thermal conductivity, comparable to values reported for state-of-the-art thermoelectric materials, is observed in this new system, and this is assumed to be associated with the rattling effect from the Ag filler atoms. It has been demonstrated that the electrical and thermal properties correlate to the Ag concentration. For x = 3.8, a promising dimensionless thermoelectric figure of merit of ∼0.7 is obtained at 800 K.  相似文献   

19.
The temperature dependence of the thermal conductivity κ(T), electrical resistivity ρ(T), and Seebeck coefficient S(T) of Mg2Sn:Ag crystals with 0 at.% to 1 at.% Ag content were measured at T = 2 K to 400 K. The crystals were cut from ingots that were prepared by the vertical Bridgman method. Undoped samples show a dramatic κ ∝ T 3 rise at low temperatures to a peak value κ 15K = 477 W m−1 K−1. This leads to exceptionally large phonon drag effects causing giant thermopower with S rising sharply to a peak value S 20K = 3000 μV K−1. At higher temperatures S decreases and changes sign to intrinsic values S ≈ −60 μV K−1. The addition of Ag changes the transport properties as follows: (a) κ decreases systematically, the peak shifts to 30 K and falls to 7 W m−1 K−1; (b) ρ changes from high to low values; (c) S(T) changes to a linear dependence with S 300K ≈ 150 μV K−1 to 200 μV K−1.  相似文献   

20.
In this paper, the effect of hole doping on the thermoelectric properties of the binary narrow-gap semiconducting intermetallic compound Ga2Ru in the temperature range from 373 K to 973 K was investigated. We synthesized sintered pellets by spark plasma sintering (SPS) after arc-melting and succeeded in preparing crack-free samples. The maximum dimensionless figure of merit ZT max was 0.50 at 773 K for the sintered Ga2Ru alloy. The temperature dependence of the electrical resistivity and its magnitude at 373 K dramatically changed from negative (~11,000 μΩcm) to positive (~200 μΩcm) upon hole doping by the substitution of Re for Ru atoms. Also, the Seebeck coefficient at 373 K changed from 300 μV/K to 75 μV/K. These changes were identified by the increase in carrier concentrations observed by Hall- effect measurements. In particular, large power factors (2.0 mW/m K2 to 3.0 mW/m K2) were obtained over a wide temperature range from 373 K to 973 K upon Re substitution. The lattice thermal conductivity beneficially decreased with increasing Re concentration as a result of an alloying effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号