首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
{332}113变形孪晶是亚稳β型钛合金变形过程中的一种独特变形机制。该类型孪晶具有特殊性质并且对亚稳β型钛合金力学性能具有显著影响。本文总结了{332}113变形孪晶的研究状况和特性,重点介绍了{332}113变形孪晶形成的几种代表性模型。通过分别对这些模型的假设条件以及需要进一步解释和验证的科学问题进行分析,旨在为理解和揭示{332}113变形孪晶的变形机制提供有用的参考信息。  相似文献   

3.
The single crystal yield surfaces (SCYS) of bcc metals for symmetric slip on {110}<111> and asymmetric slip on {112}<111> systems have been analyzed and deduced. The complete SCYS have been derived when their critical resolved shear stresses (CRSS) are specified in a particular case (such as for Mo metal). The results showed that there are 600 stress states that can be classified into 35 groups according to the crystal symmetry. Each group activates eight, six or five {110}<111> and {112}<111> slip systems depending on crystallographically nonequivalent slip systems groups. Among all these stress states, three groups activate eight systems, there are 24 stress states; four groups activate six systems, there are 48 ones; the remaining twenty-eight groups activate five systems, there are 528 ones. In this case, the fraction of vertices for which there is slip ambiguity (more than five active systems) is reduced considerably compared with pure {110}<111> slip.  相似文献   

4.
A calculation model of the Gibbs energy of ternary oxide compounds from the binary components was used. Thermodynamic properties of \(\mathrm{Yb}_{2} \mathrm{O}_{3}\) \(\mathrm{Bi}_{2}\mathrm{O}_{3}\) \(\mathrm{B}_{2}\mathrm{O}_{3}\) ternary systems in the condensed state were calculated. Thermodynamic data of binary and ternary compounds were used to determine the stable sections. The probability of reactions between the corresponding components in the \(\mathrm{Yb}_{2} \mathrm{O}_{3}\) \(\mathrm{Bi}_{2} \mathrm{O}_{3}\) \(\mathrm{B}_{2} \mathrm{O}_{3}\) system was estimated. Fusibility diagrams of systems \(\mathrm{BiBO}_{3}\) \(\mathrm{YbBO}_{3}\) and \(\mathrm{Bi}_{4} \mathrm{B}_{2} \mathrm{O}_{9}\) \(\mathrm{YbBO}_{3}\) were studied by physical–chemical analysis. The isothermal section of the phase diagram of \(\mathrm{Yb}_{2} \mathrm{O}_{3}\) \(\mathrm{Bi}_{2} \mathrm{O}_{3}\) \(\mathrm{B}_{2} \mathrm{O}_{3}\) at 298 K is built, as well as the projection of the liquid surface of \(\mathrm{BiBO}_{3}\) \(\mathrm{B}_{2} \mathrm{O}_{3}\) \(\mathrm{YbBO}_{3}\) .  相似文献   

5.
In-situ-grown \(\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}\)-reinforced \(\hbox {SiO}_{2}\textendash \hbox {Al}_{2}\hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3}\) \((\hbox {La}_{2}\hbox {O}_{3})\) self-reinforced glass–ceramic composites were obtained without any \(\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}\) seed crystal. These composites with different compositions were prepared in a nitrogen atmosphere for comparison of phase transformation and mechanical properties. The results showed that \(\hbox {SiO}_{2}\textendash \hbox {Al}_{2}\hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3}\) \((\hbox {La}_{2}\hbox {O}_{3})\) glass can effectively promote \(\upalpha \)- to \(\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}\) phase transformation. The crystallized \(\hbox {Y}_{2}\hbox {Si}_{2}\hbox {O}_{7}\textendash \hbox {La}_{4.67}\hbox {Si}_{3}\hbox {O}_{13}\) phases with a high melting point significantly benefited the high-temperature mechanical properties of the composites. The \(\hbox {Si}_{3}\hbox {N}_{4}\textendash \hbox {SiO}_{2}\textendash \hbox {Al}_{2} \hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3}\) \((\hbox {La}_{2}\hbox {O}_{3})\) glass–ceramic composites exhibit excellent mechanical properties compared with unreinforced glass–ceramic matrix, which is undoubtedly attributed to the elongated \(\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}\) grains. These glass–ceramic \(\hbox {Si}_{3}\hbox {N}_{4}\) composites with excellent comprehensive properties might be a promising material for high-temperature applications.  相似文献   

6.
生产试制的微碳深冲钢板出现了偏离常规的非{111}织构特征,通过研究这种织构的工序演变分析其形成特点.选取热轧、冷轧和退火3组试样,检测各试样的织构和金相组织,分析比较各工序试样的织构、金相组织和工艺参数,并与常规的{111}织构的工序演变过程进行比较.结果表明:非{111}织构的工序演变过程与通常的{111}织构的工序演变过程具有显著的不同;非{111}织构在热轧阶段就已经显现,在冷轧阶段形成较强的非{111}织构,在退火过程中遗传到最终钢板产品中.  相似文献   

7.
深冲IF钢再结晶{111}纤维织构形成机制探讨   总被引:3,自引:0,他引:3  
为了探讨深冲IF钢再结晶织构与退火温度之间的关系及{111}再结晶织构形成机制,采用X射线衍射三维取向(ODF)和背散射电子衍射(EBSD)分析技术并结合金相组织观察,利用Gibbs-Thom son方程对冷轧IF钢在不同退火温度下的再结晶织构演变规律及形成机制进行研究.实验结果表明:随着退火温度的增加,再结晶量逐渐增多,γ纤维织构强度亦相应增强,同时,α纤维织构强度则逐渐降低;冷轧IF钢再结晶初期的织构转变主要发生在γ纤维织构之间.研究表明,再结晶核心的形成主要以"显微择优形核"为主,晶核的长大则主要以择优生长为主,而Σ重位点阵晶界在再结晶γ纤维织构形成过程中起着重要作用.  相似文献   

8.
On the basis of computer-calculated yield functions, the work hardening of 100 textured Cu-0.64 at % Co-0.48 at % Si and 111 textured polycrystalline copper wires were studied by simultaneous torsion and extension and by pure extension. Representing the work hardening by resolved shear stress-resolved shear strain curves, the rate of hardening is significantly lower for torsion than for pure extension. This behaviour is explained by the operation of different slip systems activated in the two modes of deformation. In the 100 textured Cu-Co-Si wires, heterogeneous plastic deformation was observed beyond about 80% shear strain.  相似文献   

9.
This paper presents measurements of the thermal conductivity and the dynamic viscosity of $\mathrm{Al}_{2}\mathrm{O}_{3}$ Al 2 O 3 –ethylene glycol and $\mathrm{TiO}_{2}$ TiO 2 –ethylene glycol (1 % to 3 % particle volume fraction) nanofluids carried out in the temperature range from $0\,^{\circ }$ 0 ° C to $50\,^{\circ }$ 50 ° C. The thermal-conductivity measurements were performed by using a transient hot-disk TPS 2500S apparatus instrumented with a 7577 probe (2.001 mm in radius) having a maximum uncertainty $(k=2)$ ( k = 2 ) lower than 5.0 % of the reading. The dynamic-viscosity measurements and the rheological analysis were carried out by a rotating disk type rheometer Haake Mars II instrumented with a single-cone probe (60 mm in diameter and $1^{\circ }$ 1 ° ) having a maximum uncertainty $(k=2)$ ( k = 2 ) lower than 5.0 % of the reading. The thermal-conductivity measurements of the tested nanofluids show a great sensitivity to particle volume fraction and a lower sensitivity to temperature: $\mathrm{TiO}_{2}$ TiO 2 –ethylene glycol and $\mathrm{Al}_{2}\mathrm{O}_{3}$ Al 2 O 3 –ethylene glycol nanofluids show a thermal-conductivity enhancement (with respect to pure ethylene glycol) from 1 % to 19.5 % and from 9 % to 29 %, respectively. $\mathrm{TiO}_{2}$ TiO 2 –ethylene glycol and $\mathrm{Al}_{2}\mathrm{O}_{3}$ Al 2 O 3 –ethylene glycol nanofluids exhibit Newtonian behavior in all the investigated temperature and particle volume fraction ranges. The relative viscosity shows a great sensitivity to the particle volume fraction and weak or no sensitivity to temperature: $\mathrm{TiO}_{2}$ TiO 2 –ethylene glycol and $\mathrm{Al}_{2}\mathrm{O}_{3}$ Al 2 O 3 –ethylene glycol nanofluids show a dynamic viscosity increase with respect to ethylene glycol from (4 to 5) % to 30 % and from 14 % to 50 %, respectively. Present experimental measurements were compared both with available measurements carried out by different researchers and computational models for thermophysical properties of nanofluids.  相似文献   

10.
The present work deals with the development of a new ternary composite, \(\hbox {Ag}_{2}\hbox {Se}\)\(\hbox {G}\)\(\hbox {TiO}_{2}\), using ultrasonic techniques as well as X-ray diffraction (XRD), scanning electron microscopy (SEM), high transmission electron microscopy (HTEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and UV–Vis diffuse reflectance spectra (DRS) analyses. The photocatalytic potential of nanocomposites is examined for \(\hbox {CO}_{2}\) reduction to methanol under ultraviolet (UV) and visible light irradiation. \(\hbox {Ag}_{2}\hbox {Se}\)\(\hbox {TiO}_{2}\) with an optimum loading graphene of 10 wt% exhibited the maximum photoactivity, obtaining a total \(\hbox {CH}_{3}\hbox {OH}\) yield of 3.52 \(\upmu \hbox {mol}\,\hbox {g}^{-1}\,\hbox {h}^{-1}\) after 48 h. This outstanding photoreduction activity is due to the positive synergistic relation between \(\hbox {Ag}_{2}\hbox {Se}\) and graphene components in our heterogeneous system.  相似文献   

11.
Molten nitrate salt is usually employed as heat transfer or energy storage medium in concentrating solar power systems to improve the overall efficiency of thermoelectric conversion. In the present work, the liquidus curves of the \(\hbox {LiNO}_{3}\)\(\hbox {NaNO}_{3}\)\(\hbox {KNO}_{3}\)\(\hbox {Ca}(\hbox {NO}_{3})_{2}\) system is determined by conformal ionic solution theory according to the solid–liquid equilibrium state of the binary mixture. The calculated eutectic temperature of the mixture is \(93.17\,{^{\circ }}\hbox {C}\), which is close to the experimental value of \(93.22\,{^{\circ }}\hbox {C}\) obtained from differential scanning calorimetry (DSC). Visualization observation experiments reveal that the quaternary eutectic mixture begins to partially melt when the temperature reaches \(50\,{^{\circ }}\hbox {C}\), and the degree of melting increases with temperature. The mixture is completely melted at \(\hbox {130}\,{^{\circ }}\hbox {C}\). The observed changes in the dissolved state at different temperatures correlate well with the DSC heat flow curve fluctuations.  相似文献   

12.
In Part I of this study (Cheng et al. in Int J Thermophys 37: 62, 2016), the reflectance and transmittance of dense ceramic plates were measured at wavelengths from 0.4 \(\upmu \hbox {m}\) to about 20 \(\upmu \hbox {m}\). The samples of \(\hbox {Al}_{2}\hbox {O}_{3}\) and AlN are semitransparent in the wavelength region from 0.4 \(\upmu \hbox {m}\) to about 7 \(\upmu \hbox {m}\), where volume scattering dominates the absorption and scattering behaviors. On the other hand, the \(\hbox {Si}_{3}\hbox {N}_{4}\) plate is opaque in the whole wavelength region. In the mid-infrared region, all samples show phonon vibration bands and surface reflection appears to be strong. The present study focuses on modeling the radiative properties and uses an inverse method to obtain the scattering and absorption coefficients of \(\hbox {Al}_{2}\hbox {O}_{3}\) and AlN in the semitransparent region from the measured directional-hemispherical reflectance and transmittance. The scattering coefficient is also predicted using Mie theory for comparison. The Lorentz oscillator model is applied to fit the reflectance spectra of AlN and \(\hbox {Si}_{3}\hbox {N}_{4}\) from 1.6 \(\upmu \hbox {m}\) to 20 \(\upmu \hbox {m}\) in order to obtain their optical constants. It is found that the phonon modes for \(\hbox {Si}_{3}\hbox {N}_{4}\) are much stronger in the polycrystalline sample studied here than in amorphous films reported previously.  相似文献   

13.
The effect of Ba(\(\hbox {Mg}_{1/8}\hbox {Nb}_{3/4})\hbox {O}_{3}\) phase on structure and dielectric properties of \(\hbox {Ba(Mg}_{1/3}\hbox {Nb}_{2/3})\hbox {O}_{3}\) was studied by synthesizing \((1{-}x)\hbox {Ba(Mg}_{1/3}\hbox {Nb}_{2/3})\hbox {O}_{3}{-}x\hbox {Ba}(\hbox {Mg}_{1/8}\hbox {Nb}_{3/4})\hbox {O}_{3}\) (\(x = 0\), 0.005, 0.01 and 0.02) ceramics. Superlattice reflections due to 1:2 ordering appear as low as \(1000^{\circ }\hbox {C}\). \(\hbox {Ba}(\hbox {Mg}_{1/3}\hbox {Nb}_{2/3})\hbox {O}_{3}\) forms solid solution with \(\hbox {Ba}(\hbox {Mg}_{1/8}\hbox {Nb}_{3/4})\hbox {O}_{3}\) for all ‘x’ values studied until \(1350^{\circ }\hbox {C}\). Ordering was confirmed by powder X-ray diffraction pattern, Raman study and HRTEM. Ceramic pucks can be sintered to density \({>}92\%\) of theoretical density. Temperature and frequency-stable dielectric constant and nearly zero dielectric loss (tan \(\delta \)) were observed at low frequencies (20 MHz). The sintered samples exhibit dielectric constant (\(\varepsilon _{\mathrm{r}})\) between 30 and 32, high quality factor between 37000 and 74000 GHz and temperature coefficient of resonant frequency (\(\tau _{\mathrm{f}})\) between 21 and \(24\hbox { ppm }^{\circ }\hbox {C}^{-1}\).  相似文献   

14.
在化学气相沉积SiC膜过程中, 分别考虑了化学反应的动力学以及基底表面原子的沉积与扩散, 利用动力学蒙特卡罗方法, 建立了SiC膜{111}取向的三维原子尺度模型, 使用MATLAB模拟了原子尺度的SiC膜{111}取向生长过程. 模拟结果表明: 膜的生长经历了小岛的生成、小岛的合并与扩展、小岛间达到动态平衡三个阶段. 随着温度的升高, 膜的生长速率、表面粗糙度以及膜的厚度都增大. 随着生长速率的增大, 表面粗糙度增大, 相对密度减小. 模拟结果与理论和实验具有较好的吻合性.  相似文献   

15.
We have performed quantitative analysis of {332}〈113〉 twinning in a β-Ti-15Mo (wt.%) alloy by in situ scanning electron microscopy and electron backscattering diffraction (EBSD). Microstructure-twinning relations were evaluated by statistical analysis of the evolving twin structure upon deformation at room temperature. Our analysis reveals that at the early stages of deformation (ε < 1.5 to 2.0%), primary twinning is mainly determined by the applied macroscopic stress resolved on the twin system. Most of the primary twins (~70–80% of the analyzed twins) follow Schmid’s law with respect to the macroscopic stress, and most of the growth twins (~ 85% of the analyzed twins) correspond to the higher stressed variant. In the grain size range studied here (40–120 μm), we find that several twin parameters such as number of twins per grain and number of twins per grain boundary area exhibit grain size dependence. We ascribe these effects to the grain size dependence of twin nucleation stress and apparent critical resolved shear stress for twinning, respectively.  相似文献   

16.
Infrared (IR) transparent ceramics are found to have applications in demanding defence and space missions. In this work, \(\hbox {Y}_{2}\hbox {O}_{3}\)\(\hbox {MgO}\) nanocomposites were synthesised by a modified single-step combustion technique. The characterisation of the as-prepared powder by X-ray diffraction and transmission electron microscopy revealed the presence of cubic phases of ultra-fine nanostructured \(\hbox {Y}_{2}\hbox {O}_{3 }\) and MgO, with an average crystallite size of \({\sim }19 \hbox { nm}\). For the first time the resistive and microwave heatings were effectively coupled for sintering the sample, and it was found that the sintering temperature and soaking time were reduced considerably. The pellets were sintered to 99.2% of the theoretical density at \(1430{^{\circ }}\hbox {C}\) for a soaking duration of 20 min. The well-sintered pellets with an average grain size of \({\sim }200 \hbox { nm}\) showed better transmittance properties relative to pure yttria. The promising percentage transmission of 80% in the UV–visible region and 82% in the mid-IR region shown by \(\hbox {Y}_{2}\hbox {O}_{3}\)\(\hbox {MgO}\) nanocomposites can be tailored and made cost-effective to fabricate high-quality IR windows for strategic defence and space missions.  相似文献   

17.
Photosensitive Centers in CdTe〈Ge〉, CdTe〈Sn〉, and CdTe〈Pb〉   总被引:1,自引:0,他引:1  
The spectral and temperature dependences of photoconductivity in CdTePb crystals under band-gap and combined excitation were studied at photon energies in the range 0.53–1.7 eV and temperatures from 80 to 300 K. The high photosensitivity of the crystals and the observed IR and temperature quenching of photoconductivity indicate that, just as in CdTeGe and CdTeSn, the recombination processes in CdTePb are dominated by deep centers with drastically different capture cross sections for electrons and holes. Some parameters of the centers are determined. The results suggest that the likely defect species responsible for the high photosensitivity of CdTePb is an acceptor complex consisting of a Cd vacancy and a metal (Ge, Sn, Pb) ion on the Cd site: (V 2– CdM+)–/0.  相似文献   

18.
李聪  张贺强  李志远 《材料导报》2017,31(Z2):103-106
许多晶体在多线切割过程中都存在一定程度上的各向异性,主要研究不同砂浆状态及切入方向(晶向)对游离磨料多线切割〈111〉单晶硅翘曲度的影响。建立游离磨料线锯切割单晶硅模型,理论上分析了〈111〉晶向单晶硅不同切入方向对晶片翘曲度的影响。结果表明:对〈111〉型单晶硅而言,随着砂浆使用次数的增加,所切得硅片的翘曲度逐渐增大;从[110]、[110]、[011]、[011]、[101]及[101]六个晶向切入可有效降低晶片的翘曲度,提高晶片表面质量;在砂浆等其他状态相同的情况下,沿此六个晶向切割后硅片的翘曲度普遍比其他方向切割小4~8μm。  相似文献   

19.
The electrical and thermal properties with respect to the crystallization in \(\hbox {V}_{2}\hbox {O}_{5}\) thin films were investigated by measuring the resistance at different temperatures and applied voltages. The changes in the crystal structure of the films at different temperatures were also explored using Raman measurements. The thermal diffusivity of the crystalline \(\hbox {V}_{2}\hbox {O}_{5}\) film was measured by the nanosecond thermoreflectance method. The microstructures of amorphous and crystalline \(\hbox {V}_{2}\hbox {O}_{5}\) were observed by SEM and XRD measurements. The temperature-dependent Raman spectra revealed that a structural phase transition does not occur in the crystalline film. The resistance measurements of an amorphous film indicated semiconducting behavior, whereas the resistance of the crystalline film revealed a substantial change near \(250\,{^{\circ }}\hbox {C}\), and Ohmic behavior was observed above \(380\,{^{\circ }}\hbox {C}\). This result was due to the metal–insulator transition induced by lattice distortion in the crystalline film, for which \(T_{\mathrm{c}}\) was \(260\,{^{\circ }}\hbox {C}\). \(T_{\mathrm{c}}\) of the film decreased from 260 \({^{\circ }}\hbox {C}\) to \(230\,{^{\circ }}\hbox {C}\) with increasing applied voltage from 0 V to 10 V. Furthermore, the thermal diffusivity of the crystalline film was \(1.67\times 10^{-7}\,\hbox {m}^{2}\cdot \hbox {s}^{-1}\) according to the nanosecond thermoreflectance measurements.  相似文献   

20.
The magnetic susceptibility of high-resistivity CdTeIn and CdTeCl crystals was measured between 4.2 and 300 K. The susceptibility was found to vary anomalously with temperature. Below 50 K, all the samples were paramagnetic. The observed anomalies are interpreted in terms of donor–acceptor pairs formed by native defects and dopant or uncontrolled impurity atoms. The effect of doping on the 300-K is related to the Van Vleck paramagnetic contribution resulting from the local electric fields of XiV Cdand IniV Cddefect complexes. In CdTeCl, this contribution is insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号