首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IPDI在透明聚氨酯弹性体中的应用研究   总被引:5,自引:1,他引:5  
采用聚醚多元醇、异佛尔酮二异氰酸酯和1,4-丁二醇为原料,合成了透明聚氨酯弹性体。讨论了硬段含量、异氰酸酯指数及水分对透明聚氨酯弹性体性能的影响。结果表明:当硬段质量分数为40%时,制品邵A硬度为85,拉伸强度为12MPa,撕裂强度为25kN/m,伸长率为400%。  相似文献   

2.
以聚碳酸酯二醇(PCDL)为软段、4,4'-二苯基甲烷二异氰酸酯(MDI)/1,6-己二醇(HG)为硬段,经两步法制备了不同硬段含量的PCDL型热塑性聚氨酯弹性体,即聚碳酸酯聚氨酯(PCU); 考察了硬段含量对PCU的力学性能、结晶性能、流变性能及耐热性能的影响。结果表明,随着硬段含量的增加,PCU的拉伸强度、定伸应力及邵尔A硬度均增大,扯断伸长率减小,当硬段质量分数为40%时,PCU的拉伸强度高达28.82 MPa,300%定伸应力为21.46 MPa,扯断伸长率为382%,邵尔A硬度为85。随着硬段含量的增加,PCU的结晶能力增强,耐热性能提高。PCU具有典型的假塑性流体特征。  相似文献   

3.
以二苯基甲烷-4,4′-二异氰酸酯(MDI)和扩链剂1,4-丁二醇(BDO)为聚氨酯弹性体硬段(控制硬段质量分数32%),以实验室自制聚己二酸乙二醇酯二醇(PEA)和聚己二酸乙二醇丙二醇酯二醇(PEPA)为软段,经预聚体法合成不同结构的热塑性聚氨酯弹性体(TPU)。研究了弹性体软段部分对其硬度、力学性能和结晶性能的影响。结果表明,控制热塑性聚氨酯弹性体硬段部分不变,改变软段,材料硬度变化不大;软段聚酯二元醇随其相对分子质量的增加,TPU力学性能和结晶性能均增强;研究不同PG含量的软段PEPA-TPU发现,当PG质量分数为10%时,TPU力学性能与结晶性能最好。  相似文献   

4.
采用一步法工艺,对用于聚氨酯夹层板结构的高硬度聚氨酯弹性体进行了研究,分别考察了硬段含量、软段结构以及催化剂等对聚氨酯弹性体力学性能及工艺性能的影响。结果表明,使用自制的CA-1催化剂、混合聚醚多元醇和粗MDI体系,硬段质量分数为50%时,合成的聚氨酯弹性体邵D硬度达75、拉伸强度为26MPa、撕裂强度98kN/m、伸长率为90%、釜中寿命为9min左右,外观无气泡、开裂等缺陷,具有成本低、工艺简单、效率高的优点。  相似文献   

5.
以聚己二酸二乙二醇酯二醇(PDA)为软段,4,4′–二苯基甲烷二异氰酸酯(MDI)和1,4–丁二醇(BDO)为硬段,采用预聚体法制备一系列PDA型PUR弹性体。采用力学性能测试、广角X射线衍射(WAXD)、傅立叶变换红外光谱(FTIR)、差示扫描量热(DSC)、热重(TG)分析和维卡软化点温度测定等研究手段,研究硬段含量对其力学性能、微观形态和热性能的影响。结果表明,随着硬段含量的增加,PDA型PUR弹性体的硬度、拉伸强度、300%定伸应力、拉伸永久变形和撕裂强度都增大,当硬段含量为40.1%时,弹性体的综合力学性能最佳,硬度(邵A)为88,拉伸强度为33.9 MPa,300%定伸应力为12.5 MPa,拉伸永久变形为31%,撕裂强度为90.3 k N/m;WAXD分析表明,弹性体为无定型结构;FTIR分析表明,硬段含量的增加使弹性体总的氢键化程度增加,微相分离程度改善;DSC测试表明,硬段含量的增加使弹性体的微相分离程度提高;TG和维卡软化点温度测试表明,弹性体的热性能随着硬段含量的增加而提高,当硬段含量为40.1%时,弹性体的初始分解温度(失重5%的温度)和维卡软化点温度分别达到324.5℃和144.1℃,具有较好的热性能。  相似文献   

6.
以实验室自制聚己二酸乙二醇酯二醇PEA为软段,二苯基甲烷-4,4’二异氰酸酯(MDI)为硬段,分别采用乙二醇(EG、1,4-丁二醇)、BOD和1,6-己二醇、HG为扩链剂,经预聚体法合成了硬段不同的聚氨酯弹性体。研究了硬段结构和硬段含量对弹性体硬度及力学性能的影响。采用旋转流变仪研究了弹性体在降温条件下的非等温结晶过程。结果表明,当硬段含量相同时,BDO-TPU结晶性能最好,拉伸强度最大;HG-TPU断裂伸长率最好。在BDO-TPU体系中,随硬段含量增加,材料硬度和强度增加,伸长率减小;结晶起始温度逐渐增大,结晶性能增强。  相似文献   

7.
以不同结构聚酯(PEA、PEPA、PBA、PCL)为软段,4,4'-二苯基甲烷二异氰酸酯(MDI)和1,4-丁二醇(BDO)为硬段采用预聚体法合成了聚氨酯(PU)弹性体。讨论了MDI/BDO体系中软段种类、相对分子质量、预聚体NC0质量分数及催化剂对聚氨酯弹性体力学性能的影响,并与TDI/MOCA体系进行比较。结果表明,当软段相对分子质量相同时,PBA—PU的硬度最高提高预聚体NCO质量分数可使PU弹性体硬度、撕裂强度和300%模量增加;在制备聚氨酯弹性体中,加入催化剂的弹性体拉伸强度下降16.6%~20.1%;MDI/BDO体系的PU弹性体撕裂强度和冲击弹性较高,TDL/MOCA体系的PU弹性体拉伸强度较好、永久变形较低。  相似文献   

8.
以对苯二异氰酸酯(PPDI)、聚己内酯二醇(PCL)及扩链剂1,4-丁二醇(BDO)为原料,采用预聚体法合成了聚氨酯弹性体(PUE),研究了硬段含量对PUE硬度、常温及高温下力学性能、热性能等各项性能的影响。结果表明,随着硬段含量的提高,PUE材料的硬度、拉伸强度、高温拉伸强度和撕裂强度增大,拉断伸长率降低;PUE材料的玻璃化转变温度(Tg)提高。  相似文献   

9.
纳米蒙脱土-脂肪族聚氨酯弹性体的合成与制备   总被引:1,自引:0,他引:1  
采用聚四氢呋喃醚(PTMG1000)为软段,4,4’-二环己基甲烷二异氰酸酯(HMD1)、异佛尔酮二异氰酸酯(1PD1)为硬段,层间距分别为1.95nm和2.40nm的2种有机蒙脱土,以插层聚合法制备出不同硬段含量和有机蒙脱土含量的纳米蒙脱土.脂肪族聚氨酯弹性体,并研究了硬段含量、有机蒙脱土含量、二异氰酸酯和有机蒙脱土种类对脂肪族聚氨酯弹性体力学性能的影响。结果表明,硬段含量对材料力学性能影响最大,其次是有机蒙脱土含量。当硬段质量分数达40%时,拉伸强度最高达14.06MPa;有机蒙脱土少量加入可有效提高材料的撕裂强度和断裂伸长率。以HMD1、PTMG1000和MMT2为原料,硬段质量分数为40%时,所合成的纳米蒙脱土-脂肪族聚氨酯弹性体具有较好的力学性能。  相似文献   

10.
介绍了MDI浇注型聚氨酯弹性体(MDI-CPUE)的聚合反应特点和3种加工方法的特点及物性.讨论了预聚物法硬段含量对MDI-CPUE物性的影响,随着体系中硬段含量的增加,MDICPUE的硬度、模量、撕裂强度、拉伸强度依次提高,伸长率和回弹降低.  相似文献   

11.
合成了相对分子质量为2000且相对分子质量分布较窄的聚己内酯二醇(PCL),并进行分析表征。以自制PCL、4,4'-二苯基甲烷二异氰酸酯和1,4-丁二醇为原料,制备了不同硬段含量的PCL型热塑性聚氨酯弹性体(PCL-TPU)。通过GPC、DSC、拉伸等测试手段对其结构和性能等进行了研究。结果表明,随着硬段含量的增加,产物结晶的能力变差,拉伸强度及硬度增大,当硬段质量分数为38.7%时,可以获得韧性和强度都较好的PCL-TPU。  相似文献   

12.
介绍了低硬度聚氨酯弹性体的主要用途,包括制作胶辊、灌封材料、模塑材料及其他方面。综述了为提高低硬度聚氨酯弹性体的各项性能,在低硬度聚氨酯弹性体的软段和硬段部分配方设计的优化,以及增塑剂的研究进展。  相似文献   

13.
采用二环己基甲烷二异氰酸酯(HMDI)与聚四氢呋喃二醇(PTMEG)预聚,用三羟甲基丙烷(TMP)和1,4-BDO扩链,合成系列透明聚氨酯弹性体,研究了原材料配比、扩链剂配比对力学性能的影响,并通过加温老化、DMTA、TGA等方法对其热力学性能进行研究,结果表明:随着PU弹性体中硬段含量的增加,材料的硬度、拉伸强度、撕裂强度均有明显增加,断裂伸长率下降。PU弹性体在150℃时表面开始变黄以至黏流;硬段含量高的PU弹性体耐热性略有提高。随硬段含量增加,PU弹性体的玻璃化转变温度逐渐移向高温。PU弹性体的起始热分解温度均为320℃,交联结构及氨酯键的断裂破坏是第一阶段质量损失的主要原因。  相似文献   

14.
采用预聚体法制备了3种不同硬段结构的浇注型聚氨酯弹性体,研究了不同硬段结构对聚氨酯操作性能及力学性能的影响。结果表明,以MDI-50/MOCA作为硬段结构的聚氨酯体系黏度随时间增加较快,釜中寿命短,操作性差;以MDI-100/BDO、TDI-100/MOCA为硬段结构的聚氨酯体系,初期黏度随着时间变化增长较为缓慢,后期黏度增加较快。在力学性能方面,基于TDI-100/MOCA的弹性体的硬度、拉伸强度及伸长率表现最好,基于MDI-100/BDO的弹性体强度低、永久变形大,但回弹性能好。  相似文献   

15.
以聚碳酸酯二醇(PCDL)、4,4’-二苯基甲烷二异氰酸酯(MDI)和1,4-丁二醇(BDO)为原料,通过两步法制备了硬段含量分别为31%,38%,44%的PCDL/MDI型热塑性聚氨酯(PUR-T)弹性体,并利用拉力试验机,邵氏硬度计,X射线衍射仪,维卡软化点测定仪,动态流变仪和偏光显微镜等测试表征手段,对PUR-T弹性体的力学性能、耐热变形性能、动态流变性能以及结晶等进行了研究。结果表明,随着硬段含量的增加,PUR-T弹性体的硬度、拉伸强度和定伸应力均逐渐增大,而断裂伸长率呈下降趋势,其中当硬段含量为44%时,PUR-T弹性体的邵氏A硬度为91,拉伸强度达到24.78 MPa,300%定伸应力为12.40 MPa,而断裂伸长率为558.62%;X射线衍射图中只有宽的漫散射峰,没有锐的结晶峰,表明PUR-T弹性体呈无定形状态;PUR-T弹性体的硬段含量为31%时,维卡软化温度为83℃,而PUR-T弹性体的硬段含量为44%时,维卡软化温度达到128℃,抗热变形能力显著提高;PUR-T弹性体的熔体复数黏度均随着角频率的增加而下降,表现为剪切变稀现象,材料为假塑性流体,并且PUR-T弹性体的储能模量均随着温度的升高而降低;经过热处理后,PUR-T弹性体均有球晶生成,且结晶能力随硬段含量的增加而提高。  相似文献   

16.
以不同结构聚酯多元醇(PEA、PEPA、PBA、PCL)为软段,4,4′-二苯基甲烷二异氰酸酯(MDI)和1,4-丁二醇(BDO)为硬段采用预聚法合成了聚氨酯(PU)弹性体。讨论了MDI/BDO体系中软段种类、相对分子质量、预聚体NCO含量及催化剂对PU弹性体力学性能的影响,并与TDI/MOCA体系进行比较。结果表明,当软段相对分子质量相同时,以PBA为原料合成的PU弹性体硬度最高,弹性体的拉伸强度、伸长率和冲击弹性均随软段相对分子质量的增加而增加;提高预聚体NCO含量可使PU弹性体的硬度、撕裂强度和300%模量增加;但加入催化剂的PU弹性体,其拉伸强度下降16.6%~20.1%;MDI/BDO体系PU弹性体的撕裂强度和冲击弹性较高,TDI/MOCA体系PU弹性体的拉伸强度较好、永久变形较低。  相似文献   

17.
以聚四氢呋喃醚二醇(PTMG)为软段,4,4’-二环己基甲烷二异氰酸酯(HMDI)和异佛尔酮二胺(IPDA)为硬段,采用预聚体法制备四种高透明的聚氨酯脲(PUU)弹性体。对PUU弹性体进行红外光谱、紫外光谱、力学性能、热学性能和流变性能等测试。结果表明:四种透明PUU弹性体均为无定型结构,在450 nm处紫外透过率均高于89.8%。随着硬段含量的增加,PUU弹性体的硬度、100%定伸模量和拉伸强度均增加,而断裂伸长率下降。PUU-2.7的硬度、100%定伸模量和拉伸强度分别达到92.5、18.3 MPa和53.7 MPa。PUU-1.5试样只有一个玻璃化转变温度,微相分离程度最低。硬段含量的增加,使PUU弹性体硬段间氢键作用增强,微相分离程度增大。  相似文献   

18.
以新型的聚醚酯多元醇(PEEP)为原料,制备了浇注型聚氨酯弹性体(PUE),并与聚醚或聚酯多元醇制备的PUE进行了分析比较.结果表明,提高预聚体中NCO基含量,聚醚酯PUE的硬度、强度和耐水解性能升高,伸长率和吸水率则下降;降低PEEP中醚键相对含量,PUE硬度和强度均升高.相同硬段含量下,聚醚酯PUE的力学性能优于聚...  相似文献   

19.
《应用化工》2022,(4):811-815
分别以5种异氰酸酯为硬段,聚己二酸1,4-丁二醇酯二醇(PBA)为软段,制备了不同异氰酸酯型的热塑性聚氨酯弹性体(TPU)。通过傅里叶变换红外光谱(FTIR),差示扫描量热(DSC)和电子拉伸等测试对其结构和性能进行表征,探究了异氰酸酯类型对热塑性聚氨酯弹性体的软硬段相互作用、PBA结晶性和机械性能的影响。结果表明,HDI-TPU氨基氢键化程度最高,HMDI-TPU的硬段间氢键化程度、软段结晶度最高,IPDI-TPU的氢键化程度、软段结晶度最低。在制备的5种异氰酸酯型TPU中,HDI-TPU的拉伸强度为29.47 MPa,断裂伸长率874%,邵D硬度44,综合机械性能最佳。  相似文献   

20.
分别以5种异氰酸酯为硬段,聚己二酸1,4-丁二醇酯二醇(PBA)为软段,制备了不同异氰酸酯型的热塑性聚氨酯弹性体(TPU)。通过傅里叶变换红外光谱(FTIR),差示扫描量热(DSC)和电子拉伸等测试对其结构和性能进行表征,探究了异氰酸酯类型对热塑性聚氨酯弹性体的软硬段相互作用、PBA结晶性和机械性能的影响。结果表明,HDI-TPU氨基氢键化程度最高,HMDI-TPU的硬段间氢键化程度、软段结晶度最高,IPDI-TPU的氢键化程度、软段结晶度最低。在制备的5种异氰酸酯型TPU中,HDI-TPU的拉伸强度为29.47 MPa,断裂伸长率874%,邵D硬度44,综合机械性能最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号