首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
真空渗氮     
薄鑫涛 《热处理》2020,(2):58-59
渗氮处理通常指在低于钢的临界点Ac1,基体不发生相变的前提下,将活性氮原子渗入钢的表层,形成氮化物层的化学热处理工艺。氮化物具有高的硬度、热稳定性和弥散度。因而渗氮件能获得高的表面硬度、耐磨性、疲劳强度、抗咬合性、抗回火软化能力以及抗大气和过热蒸汽的腐蚀能力,并降低缺口敏感性。如38CrMoAl钢渗氮后表面硬度可达1100~1200HV(68~72HRC),光滑试样抗疲劳强度提高20%~40%,缺口试样抗疲劳强度提高1~2倍,高硬度可在500℃下长期保持或在600℃短期保持。当前渗氮新工艺和新设备不断涌现,离子渗氮、真空渗氮、催化渗氮以及复合渗氮等已应用生产。  相似文献   

2.
铁-氮化合物微粒被认为是活性屏离子渗氮过程中活性氮原子的主要输运载体,试验采用既不吸附氮也不与氮反应生成化合物的铜制活性屏和纯氮气氛,在没有铁-氮化合物微粒的情况下,对45钢试样进行渗氮处理.结果表明,在此条件下,45钢存在渗氮层,渗氮过程除依托铁-氮化合物输运外,活性氮原子还有其它重要的不可忽视的输运方式.  相似文献   

3.
研究了预氧化对42CrMo钢离子渗氮的催渗作用及机理。采用光学显微镜、显微硬度计、XRD、SEM和接触角测量仪研究了渗氮层厚度、渗氮层物相、预氧化后表面形貌和表面自由能。结果表明,预氧化对离子渗氮具有明显的催渗作用,在300℃预氧化30 min后进行离子渗氮(500℃、4 h),化合物层厚度达到15μm,是不经预氧化处理的传统离子渗氮化合物层厚度的2倍以上;有效扩散层厚度达到最大值570μm,明显高于传统离子渗氮的有效扩散层厚度。研究还表明,300℃预氧化30 min后表面产生了大量纳米级氧化物颗粒和微裂纹、孔洞,同时接触角最小、表面自由能最大,离子渗氮阶段氧化物可以有效地转化为氮化物。由此推测预氧化催渗机理可能是表面纳米级氧化物颗粒和微裂纹、孔洞的形成,一方面有利于活性氮原子的吸附,从而促进化合层的形成,另一方面为氮原子提供的扩散通道,有利于扩散层的增加。  相似文献   

4.
钟厉 《金属热处理》2007,32(3):25-29
分别研究了在500、600、650和700 V阴极电压条件下采用连续供气抽真空和间歇供氮闭炉的方式进行纯氮离子渗氮的工艺及机理.通过对间歇供氮闭炉离子渗氮层显微组织、相组成和硬度梯度的测定与分析,计算和验证了该工艺中N2分子临界离解能.结果表明,纯氮离子渗氮的活性氮原子来自于经阴极位降区加速的高能N 2与中性N2分子间的非弹性碰撞,离解N2分子的N 2离子临界能为48.64 eV,相应的阴极电压门槛值为650 V.纯氮离子渗氮工艺除要求阴极电压高于650 V外,间歇供气闭炉渗氮也是必备条件,在一定温度和足够高的阴极电压下,只有采用间歇供氮闭炉方式进行离子渗氮,从N2分子才能离解出足够多的活性氮原子,使试样表面产生明显的渗氮效果.  相似文献   

5.
采用正交试验法对M2钢模具表面QPQ盐浴复合处理工艺进行研究。结果表明,渗氮温度对渗氮层质量影响最大,其次为渗氮时间和氰酸根浓度。M2钢模具表面复合强化的最优工艺参数为:渗氮温度610℃,渗氮时间5 h,渗氮氰酸根浓度32%。该工艺下渗氮层深度为406μm,渗氮层显微硬度最高值为824 HV0.1。  相似文献   

6.
用滴尿素溶液的方法对W6Mo5Cr4V2钢进行氧氮共渗处理和在氨气与水蒸气环境中对H13钢进行氧氮共渗处理。利用SEM、XRD、显微硬度计和数码相机等研究氧氮共渗层的微观组织、结构及表面形貌。结果表明:两种氧氮共渗工艺均可在两种钢表面形成光滑、稳定、无裂纹的渗层。H13钢氧氮共渗工艺能得到共渗组织为Fe3O4和Fe3N的化合物层,且渗层厚,硬度梯度平缓,渗氮效果好。  相似文献   

7.
为了克服普通渗氮速度慢、周期长、渗氮层薄且脆性较大的缺点,研究了La、Ce、Pr、Nd混合稀土对38CrMoAlA钢的气体渗氮行为的影响,并对钢渗氮处理过程中的稀土催渗机理进行了探讨.研究发现:稀土能明显提高38CrMoAlA钢表面及近表面的硬度,而且稀土的作用在高温渗氮条件下比在低温渗氮条件下更明显,分析认为这是由于在稀土周围形成了氮原子气团造成的;但稀土的加入略减小了渗层厚度,这是由以稀土原子为中心的间隙原子气团的"土坝效应"造成的.  相似文献   

8.
用密封箱式炉进行短时渗氮 ,只通入氨气和氮气 ,炉气中无任何含碳气体 ,可以彻底消除HCN对环境的污染。经 560℃× 3h短时渗氮后 ,在钢的表面形成大约 ( 1 2~ 2 5) μm的化合物层。 2 0Cr钢、2 0CrMnTi、45钢和SCM 41 5钢短时渗氮后的表面硬度及渗层硬度分布都和同一设备中气体氮碳共渗的结果相同 ,除了低碳钢之外 ,用短时渗氮替代氮碳共渗是值得推广的。  相似文献   

9.
1、前言钢和铁渗氮所形成的渗层,一般区分为接近表面的化合物层和在化合物层下的扩散层(见图1[1])。传统的气体渗氮工艺,于765~815K 在氨气中渗氮20~80h,一般适用于提高零件的抗疲劳性,疲劳性能的改进归因于渗氮时扩散层形成残余宏观和微观应力[2、3]。最近,已经发展了几种渗氮工艺,特别是扩大了形成具有良好耐磨性和抗腐蚀性的化合物层,而仍能有效地改进其疲劳寿命[4]。在不仅向试件提供氮而且也提供碳的情况下,这种热处理工艺称作(铁素体)氮碳共渗(835~855K,2~8h)。对于化合物层的显微组织和相应的耐磨性及抗腐蚀性还远未认识清楚。因此,考虑到近  相似文献   

10.
38CrMoAl钢循环等离子氮碳氧硫共渗工艺的研究   总被引:1,自引:0,他引:1  
对38CrMoA l钢进行了常规等离子渗氮、循环等离子渗氮以及循环等离子氮碳氧硫共渗处理,研究这几种工艺对表面硬度、渗层组织、硬度梯度的影响。结果表明:循环等离子氮碳氧硫共渗有利于形成共渗元素进一步扩散的通道,加速共渗元素的渗入;综合表面硬度和渗层厚度,循环等离子氮碳氧硫共渗工艺明显优于常规等离子渗氮和循环等离子渗氮。  相似文献   

11.
42CrMo钢离子氮化研究   总被引:1,自引:0,他引:1  
选用42CrMo钢为实验材料,分别进行普通离子渗氮处理、活性屏离子渗氮处理及预氧化+离子渗氮处理。利用金相显微镜观察离子渗氮层的显微组织;利用XRD分析离子渗氮层中的各种物相;在试验结果的基础上,分析不同的离子渗氮方式及不同的渗氮工艺参数对渗层组织和性能的影响。结果表明:42CrMo钢经离子渗氮处理后由表及里形成明显的白亮层和扩散层;渗层由Fe2-3N和Fe4N组成;离子渗氮后试样的表面硬度得到明显提高;在不同的离子渗氮方式下,渗氮工艺参数对化合物层厚度及扩散层厚度的影响规律存在一定的差异。活性屏对离子渗氮起到一定的促进作用,低温时尤为显著。离子渗氮前进行预氧化处理,可以加速渗氮过程的进行,其中在300℃下预氧化30 min效果最佳。  相似文献   

12.
《铸造技术》2017,(3):573-576
对31CrMoV9钢在500~520℃氮势分段可控渗氮工艺进行了研究。结果表明:31CrMoV9钢在520℃深层渗氮,强渗期高氮势,扩散期低氮势的渗氮工艺,获得深硬化层,渗氮时间较短,表面硬度高,表面脆性Ⅰ级;在500℃~510℃渗氮,强渗8 h,氮势K_n=5.0~6.5,扩散4 h,K_n=1.5~2.5,渗氮后,渗氮层表面硬度800~860 HV,硬化层深度0.19~0.22 mm,表面脆性Ⅰ级;在515~520℃渗氮,强渗8 h,K_n=5.0~6.5,扩散4 h,K_n=1.5~2.5,渗氮后,渗氮层表面硬度710~800 HV,硬化层深度0.24~0.28 mm,表面脆性Ⅰ级。  相似文献   

13.
气体软氮化是以渗氮为主的低温氮碳共渗,钢表面渗入氮原子的同时,还有少量的碳原子渗入而形成极其细小的碳化物,碳化物作为媒介可促进渗氮。由于该工艺处理温度低,时间短,所以工件变形小,脆性低。综述了以提高表面硬度、抑制表层脆性、高温短时等为主的气体软氮化工艺的发展状况,分别从稀土催渗、多元共渗、周期循环渗氮、可控气氛渗氮和奥氏体软氮化等5个方面阐述了气体软氮化渗层性能的影响机理和研究现状,并介绍了35钢增压喷丸表面纳米化对气体软氮化过程的影响,展望了表面纳米化用于气体软氮化的发展前景。  相似文献   

14.
快速深层渗氮工艺的设计   总被引:12,自引:4,他引:8  
介绍了快速深层渗氮工艺的设计原理。它由周期性的渗氮和时效组成[1]。通过时效,在ε相和扩散层中形成多种通道,从而强化内扩散过程,还可降低表面氮活度,强化表面对氮的吸收,增强相界面反应,从而达到快速渗氮的目的。生产应用表明,对25Cr2MoVA钢离子渗氮30h,渗氮层深达(0.75~1.20)mm,说明工艺设计思想正确[2]。  相似文献   

15.
40Cr钢表面纳米化对气体渗氮行为的影响   总被引:1,自引:0,他引:1  
采用超音速微粒轰击技术对40Cr钢经调质处理后进行单面表面纳米化,使其表面形成晶粒尺寸约10nm的纳米晶层,然后对试样进行不同温度和时间的低温气体渗氮。利用金相法,硬度法和X射线衍射法对试样两面的渗氮层进行分析对比。结果表明:纳米层表面形成氮化物的温度可降至300℃左右,而在450℃时,原始粗晶面气体渗氮才形成连续的氮化物层。主要原因是表面纳米化后大量的晶界为氮原子的扩散提供了通道,同时,晶界和晶内存在的缺陷也可降低氮化物形成的氮势门槛值。  相似文献   

16.
一、前言为了提高钢表面的使用性能,通常把钢材进行表面氮化处理,使其形成表面渗氮层从而提高钢表面的耐磨性和抗腐蚀性能。众所周知,渗氮层中γ'-Fe_4N和各种含氮量的ε相都能强化钢的表面。但ξ-Fe_2N却为脆性相对钢表面性能起着有害作用。因此定性定量测定渗氮层中的各相及其含量对改进渗氮工艺使其提高各种强化相的含量,抑制ξ-Fe_2N相的产生都是很有意义的。渗氮层的X射线相分析,一向为人们所关注。但由于人们所使用的1-1236(ε-Fe_3N)和3-0925(ε-Fe_(2-3)N)JCPDS卡片存在着错  相似文献   

17.
田君  张奇志  高军 《热处理》2011,26(4):81-82
1稀土渗氮强化机制随着工业特别是制造业的发展,渗氮工艺的应用越来越广泛。渗氮与渗碳的区别在于渗碳是钢在奥氏体状态渗入碳原子提高钢件表面碳含量,而渗氮则是钢在铁素体状态(700℃以下)渗入氮原子提  相似文献   

18.
对2Cr13钢进行了440℃等离子体渗氮,利用金相显微镜(OM)、分析天平、X射线衍射仪(XRD)、显微硬度计和电化学工作站等仪器,对渗氮层的显微结构、增重、相组成、硬度分布和耐腐蚀性能进行了测试。结果表明:2Cr13钢在440℃氮氢比为1∶3条件下渗氮4 h、8 h和16 h后,渗氮层厚度逐渐增加,最厚为58.9μm;渗氮层质量随时间的增加而增大,增重最高为1.57×10~(-3)g/cm~2;渗氮层显微硬度显著增高,最大为1170.0 HV0.05;渗氮层表面由ε-Fe_3N和γ'-Fe_4N组成;渗氮层表面极化曲线出现钝化区,腐蚀速率显著下降,耐蚀性显著提高。  相似文献   

19.
为提高变速器锥盘使用寿命,以锥盘用38CrMoAl钢为研究材料,采用不同渗氮温度低氮氢比离子渗氮进行表面改性。利用光学显微镜、X射线衍射仪、显微硬度计、摩擦磨损试验机对渗氮后的38CrMoAl钢显微组织、物相、硬度、渗层脆性及耐磨性进行了测试和分析。结果表明:38CrMoAl钢经520℃,N2∶H2=1∶4和540℃,N_2∶H_2=1∶5离子渗氮后表层无白亮层生成,XRD分析表明表层无γ'-Fe4N相,说明离子渗氮时通过改变渗氮温度和氮氢比可以避免白亮层生成,只形成渗氮扩散层。研究还发现,渗氮层的脆性显著降低,韧性和耐磨性提高,为促进无白亮层离子渗氮技术更好地应用于变速器锥盘的表面改性提供了参考。  相似文献   

20.
采用常用42CrMo钢为研究材料,探索激光冲击预处理对离子渗氮的催渗效果与作用机理,提升离子渗氮效率。采用光学显微镜、粗糙度仪、扫描电镜、维氏显微硬度计研究激光冲击及离子渗氮后表层特性。结果表明,激光冲击对于离子渗氮具有显著的催渗效果。相同离子渗氮条件下,化合物层厚度和有效扩散层厚度都提高到传统离子渗氮的2倍左右。同时激光冲击预处理可显著提高试样表面硬度,并平缓截面硬度的下降趋势。激光冲击预处理对离子渗氮产生的显著作用源于:激光冲击预处理使试样表面粗糙度从0.015 μm提高到0.454 μm,有利于N原子吸附和氮化物形成;表层形成了厚度约200 μm的变形层,为N原子提供扩散通道,有利于提高扩散层氮浓度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号