首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
堰塞坝发生溃决破坏会严重威胁下游人民的安全。为降低其对下游的威胁,文章以黑西洛沟滑坡-泥石流-堰塞湖灾害为例,通过Flow-3D软件对坝体溃决过程进行模拟,得到流速特征及溃口冲淤情况。结果表明:泄流过程中,溃口逐步扩展,坝体下游出现侵蚀破坏,随后溃口向上游发展;泄流槽末端最大流速达到17.5m/s,溃口迅速下切,冲刷深度达25.7m。坝体下游出现淤积,淤积高度达8.4m。溃决过程中,跌坎不断向上移动,发生溯源侵蚀。研究成果有助于深入分析黑西洛堰塞坝溃决过程及机理,为今后处置堰塞体提供支持。  相似文献   

2.
针对堰塞坝坝体土石料的宽级配特性,引入与水流方向垂直的附加作用力来考虑粗颗粒对细颗粒的阻拦、遮蔽作用以及细颗粒对粗颗粒的包围、填实作用,提出了一个可模拟堰塞坝漫顶溃决过程溃口发展规律与流量过程的数值模型和相应的计算方法,利用该模型对唐家山堰塞坝泄流过程进行了模拟,得出的泄流槽发展规律与洪水流量过程与实测资料接近,验证了该模型和计算方法的合理性。进一步,利用笔者建议的数学模型及数值计算方法,比较分析了唐家山堰塞坝除险过程中泄流槽断面型式对堰塞坝泄流过程的影响,发现堰塞湖在采用泄流槽引流除险时,泄流槽深度与断面型式对其泄流过程具有重要影响,增加泄流槽深度,可明显提高泄流效率,但堰塞湖下游将承受更大的风险。对于同样深度的梯形泄流槽,如果将槽底部断面减小,形成复合梯形泄流槽,不仅可减少开挖工作量,而且没有明显降低泄流效率,同时后者的泄流过程更为平缓,最大洪峰流量减小,出现的时间滞后,堰塞湖下游承受的风险也将降低。  相似文献   

3.
准确预测堰塞湖溃坝洪水流量过程在堰塞湖应急抢险过程中极其重要。以白格堰塞湖下游水文站实测的洪水过程为依据,通过DB-IWHR溃坝洪水分析程序和GST洪水演进模型,分别采用不同冲刷侵蚀参数对"10·10"白格堰塞湖漫顶自然泄流过程进行了反演分析。结果发现:冲刷参数a=1.100 0、b=0.000 6时,叶巴滩、拉哇水文站模拟结果与实测流量结果最为接近。由此判断"10·10"白格堰塞湖溃决洪峰流量为10 882.78 m~3/s,溃决历时6.2 h到达洪峰流量,最终溃口水面宽度为99.66 m。运用DB-IWHR溃坝洪水分析程序结合基于GPU加速技术的GST洪水演进模型,计算效率得以大大提高,可以在应急抢险工作中实现快速、精准的预测。  相似文献   

4.
准确分析预测堰塞湖溃坝洪峰流量可为应急处置方案的制定和应急决策提供技术支撑。采用基于双曲线模型的冲刷侵蚀溃坝洪水分析方法,结合"10·11"和"11·03"白格堰塞湖溃坝洪水分析预测与应急抢险实践,对"10·11"白格堰塞湖自动漫顶溢流过程、"11·03"白格堰塞湖开挖人工导流槽和不开挖人工导流槽溃坝洪水过程进行了分析计算,并与应急除险过程中的实测资料进行对比。结果表明,数值计算结果与实测数据基本一致。这说明冲刷侵蚀模型的溃坝洪水分析方法可较好地分析预测堰塞坝溃决过程,白格堰塞坝溃决洪水分析预测时冲刷侵蚀率取a=1. 1,b=0. 000 5是合适的。此研究成果可供类似土石坝、堰塞坝风险分析和处理类似堰塞湖提供一定参考。  相似文献   

5.
合理预测堰塞体的溃决过程对于致灾后果评价和防灾减灾工作的开展具有至关重要的意义,但由于堰塞体结构和材料的复杂性,给预测工作带来了挑战。基于堰塞体的地质勘察资料和溃决机理,建立了一个可考虑材料冲蚀特性随深度变化的堰塞体漫顶溃决过程数学模型。模型主要包括水动力模块、材料冲蚀模块和溃口发展模块,并采用按时间步长迭代的数值计算方法模拟堰塞体溃决时的水土耦合过程。选择拥有实测资料的白格“11·03”堰塞体溃决案例对模型进行验证,模拟结果验证了模型的合理性。参数敏感性分析结果表明,堰塞体材料冲蚀系数对溃口流量过程具有重要影响,堰塞体材料临界剪应力对溃决过程影响较小;另外,开挖泄流槽可大幅降低库容较大堰塞湖溃决时的溃口峰值流量,是一种行之有效的减灾手段。  相似文献   

6.
堰塞坝的溃口流量过程是堰塞湖应急处置与风险管理的关键问题,采用数值模型计算分析堰塞坝溃口流量过程的关键是正确模拟溃口形成机理。本文在前人工作基础上,根据一般滑坡堰塞坝特点和实际观测到的堰塞坝溃口发展规律建立了一个溃口扩展模式,将溃口扩展过程归纳为三种主要表现形式,采用试验资料建立的高强度泥沙冲刷计算公式将溃口冲刷的三种表现方式联系在一起,建立堰塞坝逐渐溃决数学模型,利用实测溃坝资料验证了模型的可靠性。考虑到溃坝洪水计算的极大不确定性,对计算模型中一些关键参数给定一定变幅范围研究了这些参数对计算结果的影响。  相似文献   

7.
在强震作用下,高山峡谷区易发生滑坡堵江形成串联的梯级堰塞坝,其中一级一旦溃决易引发梯级连溃。本文基于三维雷诺平均Navier-Stokes方程、湍流重正化群模型,以及悬移质和推移质冲蚀方程,并考虑溃口边坡的失稳坍塌,采用有限体积法建立了梯级堰塞坝连溃过程数值模拟方法,用于模拟连溃过程中的水动力特征及梯级堰塞坝的溃口形态演化过程。选择典型的两级堰塞坝连溃概化模型试验作为数学模型验证案例,对比实测值和计算结果发现,上下游堰塞坝溃口洪水流量过程和溃口形态演化过程基本一致,上下游堰塞坝溃口峰值流量、区间洪水演进时间等关键参数的相对误差小于±5%;比较上下游堰塞坝溃口洪水流量过程发现,梯级堰塞坝发生连溃时,溃坝洪水存在级联放大效应。选择上下游堰塞坝距离、河道坡度和下游坝坝高等三个关键参数,研究连溃洪水的放大效应及其影响因素,参数敏感性分析结果表明:下游坝溃口峰值流量随两坝间距和下游坝坝高的减小而增大,随河道坡度的增长呈先增大后减小的趋势;上游坝溃决洪水演进至下游坝时可能产生涌浪翻越并冲蚀坝顶,导致坝顶高程降低,并对下游坝发生溃决的时间以及溃口峰值流量产生影响,因此涌浪对下游坝溃决过程的影响与涌浪翻越坝顶的水量以及坝料冲蚀特性相关。选择小岗剑上、下两级堰塞坝连溃案例,通过对比计算和实测的溃口流量以及溃口形态发现,关键溃坝参数的相对误差小于±10%,验证了模型在实际案例中应用的合理性,本文提出的数值模拟方法可为梯级堰塞坝连溃风险评估和应急处置提供重要技术支撑。  相似文献   

8.
徐照明  王永忠  宁磊 《人民长江》2008,39(22):86-88
通过溃坝计算可以对堰塞坝的溃决影响作出定量估计,以制定有效的除险方案和避险措施。采用MIKE 11溃坝洪水计算模型,对唐家山堰塞湖不同溃决历时、溃口形状及溃口发展过程情况下的溃坝洪水进行了计算分析,并对河道糙率、通口电站滞洪、干流洪水遭遇等条件进行了敏感性分析。通过上述计算分析,提高了对溃坝洪水及下游洪水演进的基本认识。  相似文献   

9.
四川、西藏交界处的金沙江右岸白格村所在岸坡于2018年10月10日和11月3日发生两次失稳滑坡,堵塞金沙江形成堰塞湖。在介绍堰塞湖形成过程及成因的基础上,分析了堰塞体结构及形态特征、溃决发展阶段、溃决特征值,并将这些特征参数与以往一些堰塞湖作了比较。分析表明:该堰塞体总体由细颗粒组成,表面及下游侧粗颗粒增加,抗冲性差、库容、来水量及堰塞体物质组成是决定溃决峰值流量的关键因素,来水量、堰塞体抗冲性及堰塞体溃流段长度是决定坝体溃决时长的关键因素。  相似文献   

10.
堰塞湖溃口洪峰流量及到达时间的准确预测是堰塞湖下游梯级水电站在制定应急方案时的重要参考依据。在重点分析了金沙江白格堰塞湖形成机制的基础上,考虑堰塞体溃口出流、冲刷及侧向拓展,按照1/2和1/3的溃决演变方式,计算出堰塞体下游梯级电站坝址处的洪峰流量及到达时间。结果表明,下游坝址离堰塞体距离越远,洪峰流量越小、到达时间越长。  相似文献   

11.
<正>准确预测堰塞湖溃坝洪水流量过程在堰塞湖应急抢险过程中极其重要。以白格堰塞湖下游水文站实测的洪水过程为依据,通过DB-IWHR溃坝洪水分析程序和GST洪水演进模型,分别采用不同冲刷侵蚀参数对"10·10"白格堰塞湖漫顶自然泄流过程进行了反演分析。结果发现:冲刷参数=1.100 0、=0.000 6时,叶巴滩、拉哇水文a b  相似文献   

12.
金沙江白格堰塞湖处置中水库应急调度经验与启示   总被引:1,自引:0,他引:1  
陈敏 《人民长江》2019,50(3):10-14
2018年10、11月金沙江四川、西藏交界的白格村接连发生两次山体滑波并引发堰塞湖险情。长江水利委员会按照水利部统一部署,及时启动应急响应,科学分析堰塞湖洪水风险,提前研究工程处置方案,科学调度金沙江中游水库,为成功处置这两次堰塞湖险情提供了强有力的技术支撑。详细介绍了溃坝洪水演进过程,以及在处置"11·3"堰塞湖洪水期间,提出的针对堰塞体溃决前后两阶段四步走的腾库实施方案。通过优先使用梨园、阿海、金安桥水库拦蓄洪水,金沙江中游梯级水库约腾出13亿m~3库容消纳溃坝洪水,将金沙江上游万年一遇洪水消减为一般洪水,全力保障下游水库安全,成功实现堰塞湖应急处置。  相似文献   

13.
不同河道状况下的堰塞坝溃坝洪水特性研究   总被引:1,自引:0,他引:1  
黄明海  金峰  杨文俊 《人民长江》2008,39(22):66-68
采用溃坝流量经验公式计算并比较分析了不同溃决模式、工程引流措施和上游来水、上游河道及坝址状况对唐家山堰塞坝溃坝流量过程的影响,采用一维溃坝洪水演进数学模型计算分析了溃坝洪水在北川至绵阳、重庆段的演进过程,比较分析了溃坝前下游河道不同水流状态和不同边界条件对溃坝洪水传播特性的影响。经过对堰塞坝实际泄流的洪水演进过程的复演计算,证明数值模拟结果与实际情况较为吻合。  相似文献   

14.
杨连伟 《人民长江》2023,(1):119-125+176
峡谷区高位滑坡发生后堵塞河道,往往造成巨大的损失。2018年10月11日及11月3日,金沙江白格滑坡两次堵塞金沙江,形成的堰塞湖淹没了上游村镇,堰塞坝溃决后洪水冲击下游造成了巨大损失。为研究白格滑坡首次失稳破坏的机理及其关键影响因素,依据现场调查建立了失稳前边坡的二维模型,并结合地质过程进行了数值模拟计算。结果表明:白格滑坡是深切河谷斜坡岩体在长期卸荷和表生时效作用下产生的岩质滑坡;斜坡破坏时主应力在软硬岩接触面附近发生应力集中,致使下部硬岩剪出口位移超过4 m最终失稳破坏;对滑坡区工程地质条件、岩体卸荷及表生改造作用等因素的分析认为,“10·11”白格滑坡是随时间推移、多种因素叠加,量变转化为质变形成的。  相似文献   

15.
我国是地震多发区,地震形成的堰塞坝一旦溃决,对下游城市和保护区将产生严重影响。由于堰塞坝溃决的复杂性和不可重复性,因此单一的数值模拟和物理模型试验均无法全面展现其变化特征。而三维视景模拟可在虚拟环境中精确地提供堰塞坝溃决及洪水演进的动态演变过程,具有显著的优势。本文重点阐述了堰塞坝溃决洪水三维视景模拟的基本原理和关键技术,基于堰塞坝溃决洪水计算模型和三维视景仿真技术之间的耦合,对堰塞坝溃决洪水进行三维分析和仿真,实现堰塞坝溃决洪水的三维视景模拟仿真与应用。相比传统的一维或者二维水动力学计算和展示,三维视景模拟更为准确和直观,它为堰塞坝溃决洪水问题的深入研究提供了一条行之有效的途径,可为提前制订应对方案和降低堰塞坝溃决所带来的损失提供参考依据。  相似文献   

16.
2018年10月10日和11月3日,金沙江白格发生2次滑坡堵江事件,影响重大。文章介绍了白格堰塞坝形成经过,通过物质来源分析和堰塞坝颗分成果确定了堰塞坝物质组成,根据堰塞湖库容、坝体形态和物质组成等因素确定了白格堰塞坝的溃决模式,最后分析了白格堰塞坝的冲刷形式和冲刷进程,可供类似堰塞坝的溃决模式与冲刷进程分析参考。  相似文献   

17.
崩滑堰塞湖是山区一种常见的地质灾害,溃决后可能造成下游人民生命财产的巨大损失。围绕崩滑堰塞湖的形成-孕灾-致灾过程,对其灾害链的形成机理和模拟方法进行了分析研究。以崩滑堰塞湖的形成过程和堰塞体的颗粒分布特征为切入点,建立了堰塞体稳定性快速评价方法,总结了堰塞体的冲蚀特性和溃决过程,提出了崩滑堰塞湖溃决过程数值模拟方法。该灾害链模拟方法基于崩滑堰塞湖的形成和溃决机理,综合考虑了堰塞体的形态特征、颗粒组成、材料冲蚀特性和堰塞湖的水动力条件,可对堰塞体的稳定性、堰塞湖的溃决洪水流量过程和溃口演化规律进行分析计算,是一种科学高效的模拟方法。选择21世纪我国3个典型的崩滑堰塞湖案例验证了灾害链模拟方法的合理性,可为风险评估提供参考。  相似文献   

18.
基于多座溃决堰塞坝案例的调查,对堰塞坝的形成机制、溃决风险及其影响因素进行分析总结,认为堰塞坝主要是由地震或降雨或火山喷发引起的山体滑坡、崩塌、泥石流所形成,形成方式可概括为滑坡、崩塌、泥石流以及碎屑流,其中滑坡是形成堰塞坝最主要的形式。堰塞坝的工作条件、坝体几何特征以及坝体物质组成和内部结构都与人工土石坝存在明显差别,其溃决的可能性远高于人工土石坝。指出堰塞坝的溃决风险主要取决于上游来水量、坝的拦蓄水量、坝的几何尺寸和坝的结构与物质组成,并讨论了降低堰塞坝溃决风险的应对措施。鉴于堰塞坝极高的溃决可能性与严重的致灾后果,建议今后加强堰塞坝溃决机理、溃坝过程的试验与数值模拟研究工作,提出能合理反映堰塞坝溃口发展规律、溃坝洪水流量过程的数值模型与相应计算方法,为科学预测堰塞坝溃决致灾后果,制定堰塞坝溃决应急预案提供技术支撑。  相似文献   

19.
《人民黄河》2015,(5):38-41
考虑堰塞湖上游洪峰流量对堰塞坝溃决过程的影响,以4种不同上游洪峰流量为变量进行8组水槽试验,观测溃坝过程和溃口的变化,总结堰塞坝漫顶溃决的4个阶段,即漫顶下渗阶段、大通道形成阶段、大通道快速冲刷阶段和稳定阶段。结果表明:最大溃口流量随上游洪峰流量的增大呈对数型增长趋势,上游洪峰流量的增大对溃坝过程影响明显,具体表现为上游洪峰流量越大,快速冲刷时间越短,溃口发展和二次垮塌的平均速率和规模越大,且溃口洪水过程由单一的水位涨落变为持续性高水位过程。  相似文献   

20.
为了提出适用于堰塞湖溃决模拟仿真的方法,在系统梳理FREAD溃坝洪水分析体系DWOPER、DAMBRK、BREACH和FLDWAV模型的基础上,对各模型的基本原理、适用条件及优缺点进行了汇总。基于各模型的功能特点,联合使用BREACH溃坝计算模型及FLDWAV洪水演进模型反演了尼泊尔逊克西(Sunkoshi)堰塞坝的溃决过程。结果表明:逊克西堰塞坝溃决过程历时68 min达到溃决洪峰流量1 794 m3/s,考虑到支流入流的情况,溃决洪峰历时154 min演进至下游37.9 km处的库帕瓦加特(Pachuwarghat)水文站,计算流量结果与该水文站实测数据较为一致,从而验证了联合使用BREACH和FLDWAV模型进行堰塞湖溃决计算的合理性和可行性。研究成果可以为制定类似堰塞湖溃决的应急处置方案提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号