首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 843 毫秒
1.
化学链重整制氢系统的过程模拟   总被引:1,自引:0,他引:1  
为了评价化学链重整制氢系统的性能,针对以CH4为燃料、以化学链技术(基于NiO/NiAl2O4氧载体)为核心的2种不同工艺重整制氢系统——自热化学链重整制氢系统(autothermal chemical looping reforming,CLR(a))和蒸汽重整化学链燃烧系统(chemical looping steam reforming,CLR(s)),采用Aspen Plus软件进行了过程模拟和热力学分析。以2种系统的产气率、冷煤气效率、CH4转化率等为评判指标,得到了各系统优化的反应条件,并分析了各操作参数(包括燃料/重整反应器温度和压力、CLR(a)中氧载体甲烷摩尔比和空气甲烷摩尔比、CLR(s)中水甲烷摩尔比和燃料甲烷份额)对系统性能的影响,最后对2种制氢系统进行了定量比较和分析。结果表明:2种化学链重整制氢系统具有相近的燃料发热量和CH4转化率(98%),但自热化学链重整制氢系统工艺更为简单,所需氧载体循环流量仅为蒸汽重整化学链燃烧制氢系统的1/3,从而可节约传输能量;而后者重整气中氢含量更高(74.14%对65.81%),且具有更高的冷煤气效率(85.28%对71.19%)和产气率(4.05对2.97)。  相似文献   

2.
构建了煤直接制氢定压实验系统,实现了高压系统内固体反应物料和水蒸气的连续供给和富氢气体产物的连续生产。以忻州烟煤为原料,在压力为3MPa和钙碳摩尔比为1.0的条件下对不同的温度等级(600、650、700和800℃)以及在3MPa压力和650℃温度条件下对不同钙碳摩尔比(0.6、1.0和1.5)进行了实验研究。实验结果表明实验压力下650℃以上的反应温度和1.0的钙碳摩尔比具有很好的制氢效果。典型工况下气态产物中氢占77.2%,甲烷占19.0%,二氧化碳及一氧化碳含量很少,均在1%左右。  相似文献   

3.
提高水煤浆气化碳转化率和冷煤气效率,是强化气化过程的必然结果。利用FLUENT软件平台,该文用数值模拟方法模拟了水煤浆气化过程中水煤浆煤、水配比和氧、碳原子比对气化过程和出口煤气成分的影响;尤其是研究了利用添加液态CO2的方法提高水煤浆煤、水配比,对提高气化炉碳转化率和冷煤气效率的影响。模拟结果显示:随着液态CO2浓度的不断升高,煤气成分中CO大幅上升,H2略有降低,CO2浓度升高;气化炉的碳转化率和冷煤气效率都有较大幅度提高,分别达到最大值98.58%、76.74%,比原工况分别提高了3.7%、6.1%;气化炉温度先降低后变化趋缓。结果证明添加液态CO2后强化了气化炉内的二次反应,提高了焦炭燃烧速率。  相似文献   

4.
将甲烷水蒸气重整制氢反应与熔融碳酸盐燃料电池技术相结合,构成了以甲烷为燃料气的直接内重整熔融碳酸盐燃料电池(D IR-M C FC)。考察了影响电池性能的条件,发现反应气压力增加会提高电池性能,反应气压力由0.1M Pa升至0.6 M Pa,在150 m A/cm 2下,电池电压约提高200 m V;增加甲烷流量利于提高电池性能,但需要合理选择甲烷的利用率;常压下,进气水碳比为1时同等电流下电池初始电压较进气水碳比为2时高30~50 m V,而在0.6 M Pa下这两种进气水碳比对电池初性能影响不大;0.6 M Pa、水碳比为1时,催化剂容易积碳,从而降低电池运行的稳定性,因此,电池在较高压力下运行时应适当提高进气水碳比。  相似文献   

5.
为了优化旋转弧等离子体部分氧化重整乙醇制氢的操作条件,通过模拟和实验研究氧碳比(O/C)对乙醇转化率、乙醇能量转化率、氢气选择性、氢气收率和干基氢气摩尔分数的影响。实验结果表明,乙醇流量为40 m L/min且O/C=0.6时,乙醇转化率最高,约100%;当O/C=1.0时,氢气选择性和收率最高,分别为81.3%和33.5%。等离子体重整副产物较多,当乙醇转化率最高时,氢气选择性和收率不一定最高。在氧碳比为0.5和0.6时,乙醇转化率的热力学模拟结果与实验结果比较接近。热力学模拟为后续旋转弧等离子体重整优化提供了热力学极限的指导。  相似文献   

6.
为了确定CO2吸收剂的不同再生方式对整个制氢过程的影响,根据含碳能源直接制氢的基本思路,构建了2种不同的制氢系统:碳部分转化(PCC)再生供热和化学链(氧化镍NO)反应供热。利用ASPENPlus软件,对2种不同再生方式下制氢系统的能量平衡和热平衡进行了热力学计算,分析系统的冷煤气效率,并对2种不同的再生方式对制氢过程中气体产物和固体产物组成的影响进行了初步分析。结果表明,相同的进料条件下,PCC过程中约68%的碳在气化炉中被气化时,系统可实现热平衡,此时冷煤气效率达0.74,而NO过程中只有51%的碳用于气化生成氢气,系统冷煤气效率只有0.67。即在该文的分析条件下,PCC过程更适合于为含碳能源直接制氢系统中的吸收剂再生供热。  相似文献   

7.
根据制氢、吸收剂再生、气体分离、热功转化等单元物质能量转化规律和单元间物流能流关联,将变压吸附气体分离与CO2吸收增强制氢过程集成,提出采用CO2吸收增强制氢的焦炉煤气制氢改进流程;以焦炉煤气能量转化效率、氢气产率、动态投资回收期为指标进行系统技术经济性能评价,并与变压吸附气体分离、焦炉煤气水蒸气重整系统进行对比,分析结果表明变压吸附与CO2吸收增强型制氢集成的系统不仅可以更高效地实现焦炉煤气能量转化利用,所构成的制氢系统也具有较好的经济效益.  相似文献   

8.
苏鹏  林彬  赵炜  羊羿 《电源技术》2021,45(4):466-469
甲烷水蒸气重整固体氧化物燃料电池(SOFC)系统主要包含了甲烷水蒸气重整制氢/供气单元、SOFC电堆单元、电化学测试单元等,系统通过换热器将SOFC电堆单元的余热回收再利用,可实现能源的梯级高效利用,具有良好的发展前景.针对系统中影响因素较多的甲烷水蒸气重整供氢单元进行了研究,通过调整重整反应的不同重整温度、水碳比等影响因素,对比分析了不同工况下CH4转化率的变化规律;在最优工况下,实现了甲烷水蒸气重整制氢/供气单元和SOFC电堆单元的直接耦合,对SOFC电堆进行了性能测试,并对比分析了耦合后的系统性能,提出进一步的优化方案.  相似文献   

9.
以新型CO2回收式煤气化系统为研究对象,建立了加压流化床煤气化动态数学模型,包括颗粒模型、气相模型、气泡模型和焓平衡模型,探讨了给煤速率、氧碳比以及水蒸气比等操作参数对碳转化率、产气量以及冷煤气效率的影响,由此确定了煤投入量的最佳操作范围。计算结果表明:在采用CO2回收循环系统下可获得70%以上的(CO+H2)合成气;CO2气氛下的气化能力比在空气气氛下减少了约2%;反应压力为1.5 MPa时,给煤速率的最佳操作范围为1.3~1.8 kg/(m2·s);氧碳摩尔比为0.5时冷煤气效率可达76%;气化温度与氧碳比基本呈线性关系,通过对氧碳比的控制可有效地调节气化温度;随着水蒸气比的增加,冷煤气效率会出现最大值,气体热值会逐渐增大;在气化温度为1073~1273 K时,CO2气氛下反应的操作范围比空气气氛下的范围大。  相似文献   

10.
甲醇重整制氢系统的数值模拟与分析   总被引:1,自引:0,他引:1  
李聪  李兴虎  宋凌珺 《电源技术》2006,30(11):898-900
利用化工流程模拟软件AspenPlus[1]建立了甲醇重整制氢系统模型,并通过自行设计的实验系统进行了验证。结果表明,该模型能够较准确地预测重整系统出口状态下的氢气体积含量,并且可用于分析操作参数对重整制氢系统性能的影响。另外,基于能量守恒原理,对系统的经济性进行了分析。研究结论可用于指导甲醇重整制氢系统重整方式的选择,工作参数选择及优化设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号