首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
采用等体积浸渍法结合程序升温还原技术合成了一系列CoN_x/CNTs催化剂,通过XRD、BET、TGDSC、TPR等手段,结合氨分解反应,研究了它们的表面性质和反应性能,结果表明,CoNx/CNTs催化剂对氨分解反应具有良好的催化活性,在500℃时氨转化率可达到66.46%.  相似文献   

2.
乙二醇还原Ru/CNTs的制备及催化氨分解性能研究   总被引:1,自引:0,他引:1  
为获得高分散的Ru负载催化剂,采用乙二醇液相化学还原沉积法制备Ru/CNTs,TEM、XRD、H2-TPD表征,结果表明,乙二醇液相还原法可以制备金属粒径小(2—4nm)而均匀的高分散度的钌修饰CNTs,其表面存在较高稳态浓度吸附氢。以氨分解制氢作探针反应,实验结果表明,在相同反应条件下,经乙二醇油浴液相还原沉积制备的Ru/CNTs催化剂上氨转化率约为浸渍法制得相应催化剂上的1.6倍,同时发现钌微晶粒径在3—4nm范围的Ru/CNTs对氨分解制氢的催化性能最佳,钌微晶粒径≤2nm时氨分解转化率明显下降。  相似文献   

3.
正电催化分解水制氢是减少环境污染及实现可再生清洁能源的重要途径。开发高效、稳定的制氢催化剂具有重要的科学价值和现实意义。石墨烯材料因其具有比表面积大、导电性好、稳定性高等优势,被广泛应用于电催化分解水制氢的研究中。  相似文献   

4.
基于化学浸渍与原位化学还原相结合的方法制备了一系列CoB/棒状丝光沸石负载型非晶态合金催化剂,并系统考察了该催化剂在硼氢化钠水解制氢中的催化活性。通过X射线衍射和扫描电镜对其晶相结构和表面形貌进行了表征。硼氢化钠水解制氢实验表明,CoB活性组分负载量为5%的CoB/丝光沸石催化剂催化效果相对最好,过高的负载量不利于催化剂活性的提高。通过丝光沸石负载可显著提高CoB合金催化剂的催化活性,反应动力学计算显示基于该催化剂的硼氢化钠水解制氢反应为零级反应,其表观反应活化能Ea为53.18kJ/mol,远低于纯CoB的活化能(73.37kJ/mol)。  相似文献   

5.
采用浸渍还原法制备了负载型非晶态合金Ru-B/ZrO_2催化剂,并考察了ZrO_2织构性质、第四周期过渡金属助剂、催化剂量、反应温度和催化剂循环使用性能对Ru-B/ZrO_2催化剂催化硼氢化钠水解产氢性能的影响。结果表明:随载体ZrO_2比表面积增加,Ru-B/ZrO_2催化剂比表面积增加,活性组分Ru-B比表面积增加,催化剂活性升高。第四周期过渡金属作助剂不利于Ru-B/ZrO_2催化剂催化硼氢化钠产氢速率的提高。载体ZrO_2比表面积为90m~2/g,Ru-B/ZrO_2催化剂的比表面积最大为86m~2/g。在303K时,0.005g该催化剂催化硼氢化钠水解产氢速率为13264mL/(min·g)(Ru),活化能为35.33kJ/mol。循环使用5次后,催化剂产氢速率仍保持初次速率的88%。  相似文献   

6.
杨雯雯  熊昆  高雪  张海东  陈佳 《功能材料》2022,53(1):1041-1047+1063
电解水制氢是由阴极析氢反应(HER)和阳极析氧反应(OER)组成。由于HER和OER所需的过电位高,反应动力学迟缓,导致电解水槽电压远高于理论平衡电压,电能消耗严重。因此,探索高效、稳定的非贵金属基电催化剂具有重要的研究意义。利用静电纺丝技术构筑的纤维材料因其较大的比表面积、独特的化学结构、易于调节的组分以及快速的电子和物质传输性能而被广泛应用在能源转化与存储领域。基于此,综述了近几年电纺碳基纤维材料在电催化水分解制氢中的研究进展,重点关注了静电纺丝技术制备的纳米纤维电催化剂用于HER、OER以及作为双功能催化剂在全水分解中产生高催化性能的优势,并对电纺材料在电催化水分解中的应用特点及其未来可能面临的挑战和发展趋势进行了展望。  相似文献   

7.
利用BET比表面积测定、XRD、TG.DTA等对化学混合法制备的Ni/SiO,单元催化剂进行了表征.BET比表面表明,适宜的硅溶胶浓度可以使催化剂具有较大的比表面积。但制备方法对比表面积影响不大.XRD表明,催化剂的活性组分为负载在SiO上的金属镍。金属镍分散越好,镍的晶粒越小,催化剂的活性也越高.TG.DTA表明催化剂活性组分和载体间的结合较强。  相似文献   

8.
在小型固定床反应器中,考察了汽油氧化重整制氢反应体系中镍催化剂 的催化性能。实验考察了镍/三氧化二铝催化剂,活性组分镍含量对汽油氧化重整制氢反应的影响,实验还考察了镍/三氧化二铝催化剂中加入贵金属助剂的催化性能。实验结果表明单组元镍/三氧化二铝催化剂对汽油氧化重整制氢反应在反应温度低于650℃时,其活性较低,生成氢气的选择性也不高;反应温度高于650℃时,其反应活性及生成氢的选择性有明显的提高。镍/三氧化二铝催化剂中加入贵金属组分作为助催化剂制成的双金属催化剂在汽油制氢反应中的催化活性及生成氢的选择性均有明显的提高。  相似文献   

9.
电催化分解水制氢(HER)被认为是最具应用前景的能量转换方式之一,可同时获得高纯度氢气并实现能量储存与转化,其关键在于低廉、高效且高稳定HER电催化剂的设计与开发.采用一步水热法得到羟基氧化镍/聚苯胺(NiOOH/PANI)催化剂前驱体,经800℃热解后制备出Ni-NiO/N-C负载型电催化剂,并考察其HER性能.采用...  相似文献   

10.
氢能既是零碳燃料,又是化石能源和可再生能源之间过渡和转换的桥梁。相对于水分解制氢,尿素分解制氢可以实现节能,以及解决尿素环境污染的问题。尿素具有储量丰富、安全性高和低成本等优点,且其理论上分解制氢性能远优于水分解制氢,是未来氢气获取的重要来源之一。尿素氧化反应(UOR)是尿素分解制氢技术的重要半反应,决定了尿素电解池或尿素燃料电池的工作效率。催化剂在UOR反应中起着关键作用,其本征物化性质以及表面性质会显著影响UOR反应动力学,目前大体发展出无基底材料支撑的镍基催化剂、有基底材料支撑的镍基催化剂和非镍基催化剂三类。然而,UOR反应的过电位很高,高于理论值约1 000 m V。UOR反应是一种涉及多质子耦合电子转移步骤的复杂反应过程,其具体的反应机理远非简单的C-N键断裂。贵金属基催化剂具有良好的UOR催化性能,但存在价格昂贵和储量不足的缺点。非贵过渡金属基催化剂则成为研究的焦点,其催化性能可能与贵金属基催化剂相当或超过贵金属基催化剂性能。镍基催化剂成为催化UOR反应的明星材料,目前已发展出金属镍、氢氧化镍、氧化镍、磷化镍、镍金属有机框架材料等大量含镍催化剂。进一步,也发展出Ni-Zn-...  相似文献   

11.
活化和MnO2沉积提高碳纳米管超级电容器的性能   总被引:5,自引:1,他引:4  
为了提高碳纳米管( carbon nanotubes,CNTs)超级电容器的性能,分别对 CNTs进行活化处理增大其比表面积和在CNTs表面沉积MnO2 引进赝电容,并利用TEM、BET、循环伏安和恒流充放电测试对实验样品进行了分析和表征。结果表明活化和MnO2 沉积有效地提高了 CNTs 超级电容器的性能。在充放电电流密度为 5mA/cm2 时,在 CNTs 的比容为46F/g的情况下,活化 CNTs和 CNTs/MnO2 复合物的比容分别达到87和150F/g,而且基于活化CNTs和CNTs/MnO2 复合物的超级电容器具有良好的功率特性。  相似文献   

12.
选用有机铝盐(异丙醇铝和醋酸铝)为原料,分别以氨水和尿素为沉淀剂,在200℃的乙醇溶剂热条件下,制备出白色前驱物粉末。通过SEM,XRD和BET等分析手段对产物进行了表征,考察原料与沉淀剂对产物的影响。结果表明:不同原料得到不同形貌的纳米γ-AlOOH,微观形貌分别为纳米级棒状和片状物;溶剂和沉淀剂种类会影响产物的比表面,采用尿素可使比表面积达到218.64m2/g。同时进一步从结晶机理方面分析了这一结果的成因。  相似文献   

13.
Ni nanoparticles supported on carbon nanotubes were prepared by microwave-assisted heating hydrazine reduction in ethylene glycol. The Ni/CNTs nanocomposites by microwave-irradiation method (MIM-Ni/CNTs) were characterized by XRD, SEM, EDS and BET. The results indicated that MIM-Ni/CNTs had compact coating, high nickel loading and large BET surface area. The catalytic activity of obtained products on the thermal decomposition of ammonium perchlorate (AP) was carried out by DTA. The burning rate of the propellant modified by MIM-Ni/CNTs was measured by strand burner method. Moreover, the experimental results showed that the obtained products could play a catalytic role in the thermal decomposition of AP and combustion of AP-based propellant.  相似文献   

14.
采用超声辅助溶胶凝胶法制备了LaFeO3颗粒,进一步以碳纳米管(CNTs)为基底和钛酸丁酯为前体,通过一步水热法煅烧合成CNTs/TiO2/LaFeO3(CTF)三元异质结光催化复合材料。通过扫描电子显微镜(SEM)、X射线衍射分析(XRD)、氮气吸附-解吸等温线(BET)、紫外-可见分光光度计(UV-Vis)、光致发光光谱(PL)等表征手段对材料的形貌与特征结构、比表面积和孔径结构以及光学特征进行了分析,并在紫外光下通过降解活性黑五(RB5)测试样品的光催化性能。结果表明,以CNTs作为载体,能够有效提升LaFeO3/TiO2复合材料的光催化性能。当CNTs在复合材料中的质量占比为5%时,150 W汞灯照射下RB5的50 min去除率可达99.5%。CNTs一方面通过增加复合材料的比较面积为催化反应的进行提供了更多的活性位点,更为重要的是,CNTs作为光生载流子传输的通道加快了电荷分离效率,提升了复合材料的降解能力和催化反应动力学进程。  相似文献   

15.
采用KOH为活化剂,通过改变活化剂用量,得到不同活化程度的活性碳纳米管.将这些ACNTs分别作为电极材料应用于电化学超级电容器,经电化学容量性能测试,发现ACNTs的电化学容量随活化剂用量的变化而变化,当mKOH/mcNT要s=3时,达到最大值.同时用TEM和HRTEM对ACNTs进行形貌分析,用氮气自动吸附仪测试了ACNTs的比表面积和等温吸附曲线,发现ACNTs的电化学容量随活化剂用量的变化与其BET比表面积有直接关系,其BET比表面积的大小决定其电化学容量的高低.  相似文献   

16.
高比表面超细铈锆钡粉体的制备   总被引:4,自引:0,他引:4  
采用聚合物前驱体法制备了超细Ce-Zr-Ba复合氧化物粉体,用XRD、TEM、BET和TG-DTA技术研究了合成的粉体的组成结构,晶粒大小、比表面和孔分布情况.结果表明,该粉体平均粒径<50nm,经600℃焙烧4h后该粉体的比表面为118.6m2/g,经800℃高温焙烧4h后比表面仍高达87.4m2/g,经1000℃高温处理后,粉体仍能保持纳米级,且分散性好,由于该粉体的高热稳定性和高比表面性能,可用作汽车尾气三效催化剂的耐高温保护性涂层材料.  相似文献   

17.
ZnO/CNTs复合材料的制备、表征及光催化性能   总被引:1,自引:0,他引:1  
潘会  胡轶  兀晓文  胡帅帅  张浩茹 《材料导报》2018,32(24):4224-4229
采用水热法制备了一系列氧化锌和碳纳米管的复合材料(ZnO/CNTs),详细考察了碳纳米管的含量对复合材料光催化性能的影响。利用X射线衍射仪、紫外-可见漫反射吸收光谱、扫描电子显微镜、X射线能谱、透射电子显微镜、X射线光电子能谱和氮气吸附-脱附等测试手段对样品的结构、形貌和光学性质进行了表征,并用亚甲基蓝溶液模拟污染物,评价了ZnO/CNTs复合材料的光催化性能。结果表明:添加CNTs提高了ZnO的比表面积,增强了ZnO的可见光吸收。ZnO/CNTs复合材料较纯ZnO具有更高的光催化活性,并且随着CNTs含量的增加,ZnO/CNTs复合材料的光催化活性呈先增加后减小的趋势。当CNTs的含量为0.3%(质量分数)时,ZnO/CNTs复合材料的光催化活性最高,经过50 min光照后,亚甲基蓝的降解率达到了96.2%。  相似文献   

18.
反相微乳液法合成碳纳米管微球   总被引:2,自引:0,他引:2  
通过对碳纳米管的混酸处理和氨水处理, 在不使用乳化剂的情况下, 采用反相微乳液法合成了形状较为规则的碳纳米管球,比较了四种不同油相以及酸处理时间、水相中碳纳米管含量和搅拌蒸发温度对微球形成和形态的影响, 并对碳纳米管微球的形成机理进行了分析. 结果表明, 采用蓖麻油作为油相, 使用酸化处理1.5h后的碳纳米管在85℃下能制备出(2~20)μm的碳纳米管微球. 此外, 随着碳纳米管在氨水的含量从0.27wt%增加到0.55wt%, 制备出的微球越大, 表面越紧密.  相似文献   

19.
KOH活化法高比表面积竹质活性炭的制备与表征   总被引:7,自引:0,他引:7  
以竹屑为原料,研究了KOH活化法高比表面积活性炭的制备工艺.分别考察了浸渍比、活化温度、活化时间等工艺参数对产品吸附性能的影响,并提出了可能的活化机理.在所研究的实验条件下,最佳的制备工艺是浸渍比1.0,活化温度800℃,活化时间2h.所得到的活性炭产品的比表面积和孔容可达2996m2/g和1.64cm3/g.该产品附加值高,在吸附领域特别是在双电层电容器的电极材料领域有广阔的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号