首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of gas velocity to draft tube (3–6 Um), bed temperature (800–900°C) and excess air ratio (0–30%) on the total entrainment rate, overall combustion efficiency and heat transfer coefficient have been determined in an internally circulating fluidized bed combustor with a draft tube. The total entrainment rate increases with an increase in gas velocity to draft tube, but decreases with increasing bed temperature and excess air ratio. The overall combustion efficiency increases with increasing excess air ratio, but decreases with increasing gas velocity to draft tube. The overall combustion efficiency obtained in internally circulating fluidized beds was found to be somewhat higher than that in a bubbling fluidized bed combustor.  相似文献   

2.
Hüseyin Topal  Ali Durmaz 《Fuel》2003,82(9):1049-1056
In this study, a circulating fluidized bed of 125 mm diameter and 1800 mm height was used to find the combustion characteristics of olive cake (OC) produced in Turkey. A lignite coal that is most widely used in Turkey was also burned in the same combustor. The combustion experiments were carried out with various excess air ratios. The excess air ratio, λ, has been changed between 1.1 and 2.16. Temperature distribution along the bed was measured with thermocouples. On-line concentrations of O2, SO2, CO2, CO, NOx and total hydrocarbons were measured in the flue gas. Combustion efficiencies of OC and lignite coal are calculated, and the optimum conditions for operating parameters are discussed. The combustion efficiency of OC changes between 82.25 and 98.66% depending on the excess air ratio. There is a sharp decrease observed in the combustion losses due to hydrocarbons and CO as the excess air ratio increases. The minimum emissions are observed at λ=1.35. Combustion losses due to unburned carbon in the bed material do not exceed 1.4 wt% for OC and 1.85 wt% for coal. The combustion efficiency for coal changes between 82.25 and 98.66% for various excess air ratios used in the study. The ash analysis for OC is carried out to find the suitability of OC ash to be used as fertilizer. The ash does not contain any hazardous metal.  相似文献   

3.
High temperature air was adopted by combustion in high excess air ratio in a circulating fluidized bed. Experiments on pulverized coal combustion in high temperature air from the circulating fluidized bed were carried out in a down-fired combustor with the diameter of 220 mm and the height of 3000 mm. The NO emission decreases with increasing the residence time of pulverized coal in the reducing zone, and the NO emission increases with excess air ratio, furnace temperature, coal mean size and oxygen concentration in high temperature air. The results also revealed that the co-existing of air-staging combustion with high temperature air is very effective to reduce nitrogen oxide emission for pulverized coal combustion in the down-fired combustor.  相似文献   

4.
A new technique of achieving high temperature air was adopted by combustion in high excess air ratio in a circulating fluidized bed (CFB). Experiments on pulverized coal combustion in high temperature air from the CFB were made in a down-fired combustor with the diameter of 220 mm and the height of 3000 mm. High temperature air with lower oxygen concentrations can be achieved steadily and continuously by combustion in the circulating fluidized bed. Pulverized coal combustion in high temperature air shows a uniform temperature profile along the axis of the down-fired combustor and the combustion efficiency is 99.8%. The NOx emission is 390 mg/m3, 13% lower than the regulation for thermal power plants in China. The HCN and NH3 emissions, as well as N2O, are about zero in the exhaust.  相似文献   

5.
The characteristics of emission and heat transfer coefficient in a pressurized fluidized bed combustor are investigated. The pressure of the combustor is fixed at 6 atm. and the combustion temperatures are set to 850, 900, and 950 °C. The gas velocities are 0.9, 1.1, and 1.3 m/s and the excess air ratios are 5, 10, and 20%. The desulfurization experiment is performed with limestone and dolomite and Ca/S mole ratios are 1,2, and 4. The coal used in the experiment is Cumnock coal from Australia. All experiments are executed at 2 m bed height. In this study, the combustion efficiency is higher than 99.8% through the experiments. The heat transfer coefficient affected by gas velocity, bed temperature and coal feed rate is between 550-800 W/m2 °C, which is higher than those of AFBC and CFBC. CO concentration with increasing freeboard temperature decreases from 100 ppm to 20 ppm. NOx concentration in flue gas is in the range of 5-130 ppm and increases with increasing excess air ratio. N2O concentration in flue gas decreases from 90 to 10 ppm when the bed temperature increases from 850 to 950 °C.  相似文献   

6.
To produce low calorific value gas, Australian coal has been gasified with air and steam in a fluidized bed reactor (0.1 m-I.Dx1.6 m-high) at atmospheric pressure. The effects of fluidizing gas velocity (2–5 Uf/Umf), reaction temperature (750–900 °C), air/coal ratio (1.6-3.2), and steam/coal ratio (0.63–1.26) on gas composition, gas yield, gas calorific value of the product gas and carbon conversion have been determined. The calorific value and yield of the product gas, cold gas efficiency, and carbon conversion increase with increasing fluidization gas velocity and reaction temperature. With increasing air/coal ratio, carbon conversion, cold gas efficiency and yield of the product gas increase, but the calorific value of the product gas decreases. When steam/coal ratio is increased, cold gas efficiency, yield and calorific value of the product gas increase, but carbon conversion is little changed. Unburned carbon fraction of cyclone fine decreases with increasing fluidization gas velocity, reaction temperature and air/coal ratio, but is nearly constant with increasing steam/coal ratio. Overall carbon conversion decreases with increasing fluidization velocity and air/ coal ratio, but increases with increasing reaction temperature. The particle entrainment rate increases with increasing fluidization velocity, but decreases with increasing reaction temperature. This paper is dedicated to Professor Dong Sup Doh on the occasion of his retirement from Korea University.  相似文献   

7.
Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency.Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gas-solid flow is essential for the optimization and operation of a chemical looping combustor.Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.  相似文献   

8.
A well-designed CFBC can burn coal with high efficiency and within acceptable levels of gaseous emissions. In this theoretical study effects of operational parameters on combustion efficiency and the pollutants emitted have been estimated using a developed dynamic 2D (two-dimensional) model for CFBCs. Model simulations have been carried out to examine the effect of different operational parameters such as excess air and gas inlet pressure and coal particle size on bed temperature, the overall CO, NOx and SO2 emissions and combustion efficiency from a small-scale CFBC. It has been observed that increasing excess air ratio causes fluidized bed temperature decrease and CO emission increase. Coal particle size has more significant effect on CO emissions than the gas inlet pressure at the entrance to fluidized bed. Increasing excess air ratio leads to decreasing SO2 and NOx emissions. The gas inlet pressure at the entrance to fluidized bed has a more significant effect on NOx emission than the coal particle size. Increasing excess air causes decreasing combustion efficiency. The gas inlet pressure has more pronounced effect on combustion efficiency than the coal particle size, particularly at higher excess air ratios. The developed model is also validated in terms of combustion efficiency with experimental literature data obtained from 300 kW laboratory scale test unit. The present theoretical study also confirms that CFB combustion allows clean and efficient combustion of coal.  相似文献   

9.
Aysel T. Atimtay  Murat Varol 《Fuel》2009,88(6):1000-1008
In this study, a bubbling fluidized bed of 102 mm inside diameter and 900 mm height was used to burn olive cake and coal mixtures. Tunçbilek lignite coal was used together with olive cake for the co-combustion tests. Combustion performances and emission characteristics of olive cake and coal mixtures were investigated. Various co-combustion tests of coal with olive cake were conducted with mixing ratios of 25%, 50%, and 75% of olive cake by weight in the mixture. Operational parameters (excess air ratio, secondary air injection) were changed and variation of pollutant concentrations and combustion efficiency with these operational parameters were studied. The results were compared with that of the combustion of olive cake and coal. Flue gas concentrations of O2, CO, SO2, NOx, and total hydrocarbons (CmHn) were measured during combustion tests.For the setup used in this study, the optimum operating conditions with respect to NOx and SO2 emissions were found to be 1.35 for excess air ratio, and 30 L/min for secondary air flowrate for the combustion of 75 wt% olive cake and 25 wt% coal mixture. The highest combustion efficiency of 99.8% was obtained with an excess air ratio of 1.7, secondary air flow rate of 40 L/min for the combustion of 25 wt% olive cake and 75 wt% coal mixture.  相似文献   

10.
Combustion tests were carried out with Minto coal in combination with three different limestones in the University of British Columbia (UBC) pilot scale (152 mm square x 7.3 m tall) circulating fluidized bed combustion (CFBC) unit. Operating conditions were chosen to be typical of those employed in large-scale CFBC power boilers. Recycling of fine particles captured by the secondary cyclone was found to be of considerable importance in increasing sulphur capture, enhancing combustion efficiency and reducing the amount of calcium sulphide in the solids residues. NOx emissions increased as the Ca:S ratio increased. Local gas concentrations inside the reactor were strongly influenced by the core-annulus solids distribution patterns which characterize circulating fluidized beds.  相似文献   

11.
串行流化床煤气化试验   总被引:3,自引:3,他引:0  
吴家桦  沈来宏  肖军  卢海勇  王雷 《化工学报》2008,59(8):2103-2110
针对串行流化床煤气化技术特点,以水蒸气为气化剂,在串行流化床试验装置上进行煤气化特性的试验研究,考察了气化反应器温度、蒸汽煤比对煤气组成、热值、冷煤气效率和碳转化率的影响。结果表明,燃烧反应器内燃烧烟气不会串混至气化反应器,该煤气化技术能够稳定连续地从气化反应器获得不含N2的高品质合成气。随着气化反应器温度的升高、蒸汽煤比的增加,煤气热值和冷煤气效率均会提高,但对碳转化率影响有所不同。在试验阶段获得的最高煤气热值为6.9 MJ•m-3,冷煤气效率为68%,碳转化率为92%。  相似文献   

12.
In this study a bubbling fluidized bed combustor (BFBC) having an inside diameter of 102 mm and a height of 900 mm was used to investigate the co-combustion characteristics of peach and apricot stones produced as a waste from the fruit juice industry with coal. A lignite coal was used for co-combustion. On-line concentrations of O2, CO, CO2, SO2, NOX and total hydrocarbons (CmHn) were measured in the flue gas during combustion experiments. Variations of emissions of various pollutants were studied by changing the operating parameters (excess air ratio, fluidization velocity, and fuel feed rate). Temperature distribution along the bed was measured with thermocouples.  相似文献   

13.
An incineration test of a toxic chemical organic waste liquid was conducted on a circulating fluidized bed (CFB) incinerator. The flue gas was measured online with the advanced SAE-19 flue gas analyzer. The effects of several factors, in terms of flow rate of waste liquid, ratio of waste liquid injected into dense bed of the CFB, excess air coefficient, the secondary air fraction and bed temperature on NO x emissions, were verified. The experimental results show that NO emissions in flue gas increase with increase in the flow rate of the waste liquid injected into the bed or the excess air coefficient or the bed temperature and those decrease with increase in the ratio of waste liquid injected into the dense bed of the CFB or the secondary air fraction. During the test runs, NO x concentration in flue gas met the national regulation on NO x emissions due to suppressive effect of low temperature and staged combustion in CFB on NO x formation. This paper was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

14.
《Fuel》2007,86(10-11):1430-1438
Combustion performances and emission characteristics of olive cake and coal are investigated in a bubbling fluidized bed. Flue gas concentrations of O2, CO, SO2, NOx, and total hydrocarbons (CmHn) were measured during combustion experiments. Operational parameters (excess air ratio (λ), secondary air injection) were changed and variation of pollutant concentrations and combustion efficiency with these operational parameters were studied. The temperature profiles measured along the combustor column was found higher in the freeboard for olive cake than coal due to combustion of hydrocarbons mostly in the freeboard. Combustion efficiencies in the range of 83.6–90.1% were obtained for olive cake with λ of 1.12–2.30. For the setup used in this study, the optimum operating conditions with respect to NOx and SO2 emissions were found as 1.2 for λ, and 50 L/min for secondary air flowrate for the combustion of olive cake.  相似文献   

15.
To understand vortexing fluidized bed combustor (VFBC) performances, an investigation was carried out in a 0.45 m diameter and 4.45 m height pilot scale VFBC. Rice husks, corn, and soybean were used as the biomass feedstock and silica sand serving as the bed material. The bubbling bed temperature was controlled by using water injected into the bed. The experimental results show that the excess air ratio is the dominant factor for combustion efficiency. The in-bed combustion proportion increases with the primary air flow rate and bed temperature, and decreases with the volatile/fixed carbon ratio. The stability constant is proposed to describe the inertia characteristics of the vortexing fluidized bed combustor. The experimental results indicate that the stability of the VFBC increases with bed weight and primary air flow rate, but decreases with bed temperature.  相似文献   

16.
《Fuel》2006,85(7-8):967-977
Atmospheric bubbling fluidised bed coal combustion (ABFBCC) of a bituminous coal and an anthracite with particle diameters in the range 500–4000 μm was investigated in a pilot-plant facility, with and without limestone addition. The experiments were conducted at steady-state conditions using three excess air levels (10, 25 and 50%) and bed temperatures in the range 750–900 °C. Combustion air was staged, with primary air accounting for 100, 80 and 60% of total combustion air.During limestone addition, in general, the NO emission decreases with the decrease in excess air and the increase in air staging, for both coals (as also observed without limestone). The bed temperature does not influence the NO emission significantly (as also observed without limestone); however, it was observed that during bituminous coal combustion there is a slight trend for a decrease on the NO emission with temperature increase in the range 825–900 °C, whereas for anthracite coal the trend is the opposite. On the other hand, the N2O emission increases with: the decrease in excess air, the increase in air staging (as opposed to what was observed without limestone), and the decrease in bed temperature (as also observed without limestone).Taking the coal combustion without limestone as reference, it was observed that the effect of limestone addition on the NO and N2O emission depends on the first stage stoichiometry: (1) under first stage fuel lean conditions the NO emission increases, while that of N2O decreases, (2) under first stage fuel rich conditions (for example, high air staging) the opposite trend is observed.  相似文献   

17.
A theoretical and experimental study of natural gas–air mixture combustion in a fluidized bed of sand particles is presented. The operating temperatures are lower than a critical temperature of 800 °C above which the combustion occurs in the vicinity of the fluidized bed. Our study focusses on the freeboard zone where most of the methane combustion takes place at such temperatures. Experimental results show the essential role of the projection zone in determining the global thermal efficiency of the reactor. The dense bed temperature, the fluidizing velocity and the mean particle diameter significantly affect the thermal behaviours.A model for natural gas–air mixture combustion in fluidized beds is proposed, counting for interactions between dense and dilute regions of the reactor [P. Pré, M. Hemati, B. Marchand, Study of natural gas combustion in fluidised beds: modelling and experimental validation, Chem. Eng. Sci. 53 (1998) (16), 2871] supplemented with the freeboard region modelling of Kunii–Levenspiel [D. Kunii, O. Levenspiel, Fluidized reactor models: 1. For bubbling beds of fines, intermediate and large particles. 2. For the lean phase: freeboard and fast fluidization, Ind. Eng. Chem. Res. 29 (1990) 1226–1234]. Thermal exchanges due to the convection between gas and particles, and due to the conduction and radiation phenomena between the gas-particle suspension and the reactor walls are counted. The kinetic scheme for the methane conversion is that proposed by Dryer and Glassman [F.L. Dryer, I. Glassman, High-temperature oxidation of CO and CH4, Proceedings of the 14th International Symposium on Combustion, The Combustion Institute, Pittsburg (1973) 987]. Model predictions are in good agreement with the measurements.  相似文献   

18.
In this research, co-combustion of coal and rice husk was studied in a circulating fluidized bed combustor (CFBC). The effects of mixed fuel ratios, primary air and secondary air flow rates on temperature and gas concentration profiles along riser (0.1 m inside diameter and 3.0 m height) were studied. The average particle size of coal from Maetah used in this work was 1,128 mm and bed material was sand. The range of primary air flow rates was 480–920 l/min corresponding to U g of 1.0–2.0 m/s for coal feed rate at 5.8 kg/h. The recirculation rate through L-valve was 100 kg/hr. It was found that the temperatures along the riser were rather steady at about 800–1,000 degrees Celsius. The introduction of secondary air improved combustion and temperature gradient at the bottom of the riser, particularly at a primary air flow rate below 1.5 m/s. Blending of coal with biomass, rice husk, did improve the combustion efficiency of coal itself even at low concentration of rice husk of 3.5 wt%. In addition, the presence of rice husk in the feed stocks reduced the emission of both NO x and SO2.  相似文献   

19.
朱葛  赵长遂  陈晓平  林良生  周骛 《化工学报》2008,59(10):2627-2633
在一座热态循环流化床燃烧试验装置上对石化污泥与煤进行混烧试验,通过对焚烧过程中烟气成分进行分析,着重考察了质量掺混比、二次风率、过剩空气系数和床温对SO2、NOx和多环芳烃排放浓度的影响。试验结果表明,随着质量掺混比的增大,SO2和NOx的排放浓度下降,而多环芳烃排放浓度呈上升趋势。随着二次风率的增加,SO2的排放浓度上升,而NOx的排放浓度呈下降趋势。随着过剩空气系数的增加,SO2的排放浓度下降,NOx的排放浓度呈上升态势。随着床温或者过剩空气系数的增加,烟气中多环芳烃排放浓度均呈先下降后上升趋势。综合考虑稳定燃烧和降低污染物排放等因素,得出一系列最佳燃烧参数。燃烧温度应该控制在850~860℃,过剩空气系数应该控制在1.35左右,二次风率应该控制在40%左右,质量掺混比应该控制在30%左右。在本次试验范围内,各工况SO2、NOx和多环芳烃的排放浓度均满足国家排放标准。  相似文献   

20.
Characteristics of CO2 hydrogenation were investigated in a fluidized bed reactor (0.052 m IDxl.5 m in height). Coprecipitated Fe-Cu-K-Al catalyst (dρ=75–90 Μm) was used as a fluidized solid phase. It was found that the CO2 conversion decreases but the CO selectivity increases, whereas the space-time-yield attains maximum values with increasing gas velocity. The CO2 conversion has increased, but CO selectivity has decreased with increasing hydrogenation temperature, pressure or H2/CO2 ratio in the fluidized bed reactor. Also, the CO, conversion and olefin selectivity appeared to be higher in the fluidized bed reactor than those of the fixed bed reactor. Presented at the Int’l Symp. on Chem. Eng. (Cheju, Feb. 8–10, 2001), dedicated to Prof. H. S. Chun on the occasion of his retirement from Korea University  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号