首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The energy storage density of a Ba0.4Sr0.6TiO3 ceramic with the addition of 5–20 vol% glass was investigated. The results show that the improvement of the energy density in glass-added Ba0.4Sr0.6TiO3 samples arises due to two factors: one is that the breakdown strength is notably improved due to the decrease of the porosity and the reduction of the grain size and pore size in glass-added samples and the other is that the remnant polarization of glass-added samples is decreased. The energy density of the samples containing 5 vol% glass additive was improved by a factor of 2.4 compared with that of pure Ba0.4Sr0.6TiO3.  相似文献   

2.
The dielectric properties, including the DC breakdown strength, of 1 mol% Nb5+-doped BaTiO3 ceramics with different quantities of excess TiO2 have been investigated. The breakdown strength was found to decrease with increasing TiO2 content, but could not be readily explained by relative density and grain size effects. The decrease in the breakdown strength from a stoichiometric BaTiO3 composition to samples with excess TiO2 is believed to be due to the field enhancement effect (up to a factor of 1.40) at the BaTiO3 matrix because of the presence of a Ba6Ti17O40 second phase. The thermal expansion coefficient mismatch between the BaTiO3 matrix phase and the Ba6Ti17O40 phase may also result in a low breakdown strength. The dielectric properties of the pure Ba6Ti17O40 phase were also investigated and are reported herein.  相似文献   

3.
A series of BaTiO3 (BT)-based ferroelectric glass–ceramics have been prepared via controlled crystallization by varying the Ba/Ti ratio in an aluminum silicate glass composition, and the subsequent microstructure, phase evolution, and dielectric properties have been investigated. X-ray diffraction indicated that an increasing Ba/Ti ratio promoted the crystallization of BaTiO3 and BaAl2Si2O8 from the glass matrix, and the cracking of glass–ceramics appears to be correlated to mismatch in the thermal expansion coefficient among BaTiO3, BaAl2Si2O8, and the glass matrix. In addition, it was found that increasing the Ba/Ti ratio facilitated the formation of a dendrite structure with obvious porosity. The change in the Ba/Ti ratio in the glass notably modified the dielectric properties: a high Ba/Ti ratio in the glass resulted in an increased dielectric constant and decreased breakdown strength.  相似文献   

4.
The effect of Si3N4, Ta5Si3, and TaSi2 additions on the oxidation behavior of ZrB2 was characterized at 1200°–1500°C and compared with both ZrB2 and ZrB2/SiC. Significantly improved oxidation resistance of all Si-containing compositions relative to ZrB2 was a result of the formation of a protective layer of borosilicate glass during exposure to the oxidizing environment. Oxidation resistance of the Si3N4-modified ceramics increased with increasing Si3N4 content and was further improved by the addition of Cr and Ta diborides. Chromium and tantalum oxides induced phase separation in the borosilicate glass, which lead to an increase in liquidus temperature and viscosity and to a decrease in oxygen diffusivity and of boria evaporation from the glass. All tantalum silicide-containing compositions demonstrated phase separation in the borosilicate glass and higher oxidation resistance than pure ZrB2, with the effect increasing with temperature. The most oxidation-resistant ceramics contained 15 vol% Ta5Si3, 30 vol% TaSi2, 35 vol% Si3N4, or 20 vol% Si3N4 with 10 mol% CrB2. These materials exceeded the oxidation resistance of the ZrB2/SiC ceramics below 1300°–1400°C. However, the ZrB2/SiC ceramics showed slightly superior oxidation resistance at 1500°C.  相似文献   

5.
Interfacial reactions of pure, lead-, and zirconium-substituted BaTiO3 ceramics with PbOB2O3 glasses were studied, with an emphasis on the effect of glass composition. Microstructures were analyzed by scanning electron microscopy and electron-probe microanalysis aided with X-ray diffractometry of powder mixtures in the system BaTiO3PbOB2O3 heated at 850°C. The interfacial microstructures were divided into two types, depending on the glass composition. The first type was characterized by precipitates of TiO2 dispersed in the glass matrix. Extended heating or limited glass volume resulted in the formation of a continuous layer of BaTi(BO3)2. The second type of microstructure was characterized by a lead-rich perovskite phase, which developed at the glass/ceramic interfacial region. Growth kinetics for this phase denied the diffusion-controlled mechanism. The substitution of lead in BaTiO3 enhanced the penetration of glass into the ceramics along the grain boundaries and developed a coreshell structure.  相似文献   

6.
Interaction between Barium Titanate and Binary Glasses   总被引:2,自引:0,他引:2  
Interactions between BaTiO3, and three binary glasses were studied through the reaction of BaTiO3, powder with glass powder. For PbO–B2O3 and PbO–SiO2 glasses, the reaction led to stable compound formation, the substitution of Pb in the BaTiO3 structure, and noticeable grain growth of BaTiO3. The interaction phenomena for these two glass systems were very similar. The substitution of Pb into BaTiO3 is assisted by chemical reactions in which BaB2O4 or Ba2SiO4 is formed. The substitution into BaTiO3 also seems to be closely related to the grain growth of BaTiO3. On the other hand, only compound formation was observed during the processing of BaTiO3 with Bi2O3–B2O3 glass. Neither BaTiO3 grain growth nor Bi substitution took place with the Bi2O3–B2O3 glass system. Based on the observed reactions and the glass viscosity, several sintering aids for BaTiO3 ceramic products are suggested in this paper.  相似文献   

7.
A glass with the eutectic composition 3MnO1.5–2SiO2 was used to simulate the formation of a liquid phase during sintering of BaTiO3. Two oxide additives (Mn2O3 and SiO2) performing various functions of the properties of BaTiO3 were investigated for their crystallization and thermal characteristics at temperatures ≤1400°C. The wetting behavior of the glass, the dissolution of BaTiO3 in glass melt, the identification of newly formed phases, and the sequential reaction kinetics of the glass/BaTiO3 system, especially when isothermally treated at 1150°C, were investigated by electron microscopy with quantitative X-ray energy dispersive spectroscopic (Q-EDS) analysis. The evolution of the interfacial reaction of the glass/BaTiO3 at 1150°C is reported and discussed.  相似文献   

8.
Colloidal stability of concentrated aqueous BaTiO3 suspensions with ammonium salts of poly(acrylic acid) (PAA-NH4) and poly(methacrylic acid) (PMAA-NH4) as a function of pH and solids loading is investigated. For suspensions with solids loading less than 40 vol%, the required polyelectrolyte concentration to stabilize aqueous BaTiO3 suspensions decreases with increasing pH, but remains relatively unchanged with increasing solids loading. As the solids loading continuously increases (e.g., >50 vol%), the required amount of polyelectrolyte increases, but exhibits a minimum at pH ∼ 9.2. The critical amount of polyelectrolyte needed to achieve colloidal stability of aqueous BaTiO3 suspensions as a function of pH and solids loading is summarized in a three-dimensional stability map.  相似文献   

9.
The properties and composition of glasses suitable for crystallization of BaTiO3 are described. The crystallization of certain glasses results in a nearly complete recovery of BaTiO3, besides the feldspar BaAl2SiO3 as a minor phase. The mechanism of crystallization was investigated by thermal analysis, viscosity, and grainsize measurements as a function of the temperature whereas density data were used for evaluation of the BaTiO3 content. Within the range 30 to 60% by volume of BaTiO3 at about 1μ grain size, the measured dielectric constant increased from 100 to 1200. The calculated partial dielectric constant of the Titanate phase at this grain size was about 3500. As the grain size approached 0.1μ, the dielectric constant decreased and became nearly independent of the temperature because of the predominance of surface states. Other effects were attributed to special structural characteristics, such as absence of porosity and clamping of the titanate particles within the microcrystalline matrix. Data are also presented on dielectric constant and loss tangent at different frequencies, dc breakdown strength, dc resistivity, and ferroelectric properties as a function of the grain size of the crystallized material.  相似文献   

10.
The successive phase transformations in MgO-doped BaTiO3 were studied. Upon MgO doping, dielectric anomalies corresponding to lower phase transformations were broadened and depressed, while an anomaly for a cubic–tetragonal transformation remained and shifted to a lower temperature. XRD peak splitting upon tetragonality of BaTiO3 was decreased, and the peaks exhibited abnormally broadened profiles which are different from the one for cubic BaTiO3 above T c. Raman spectroscopy revealed the existence of orthorhombic phase at room temperature for the solid solution with 0.5 mol% or more MgO. The temperature dependence of the Raman spectrum showed that orthorhombic and rhombohedral phases in MgO-doped BaTiO3 were stabilized at higher temperatures than pure BaTiO3.  相似文献   

11.
A series of BaTiO3–MgO–glass mixtures has been sintered via liquid-phase sintering in a reducing atmosphere at 1280°C by controlling MgO/CaO ratio in an aluminum borosilicate glass composition, and the subsequent microstructure, phase evolution, and dielectric properties have been investigated. The growth of BaTiO3 grains was inhibited in all of the prepared specimens with the evidence of Mg incorporation to the BaTiO3 lattice from the glass. The change in MgO/CaO ratio in the glass notably modified the dielectric properties: a high MgO/CaO ratio in the glass resulted in a decreased dielectric constant, a decreased phase transition temperature, a broadened temperature range of phase transition, a decreased temperature coefficient of capacitance, and increased electrical resistivity.  相似文献   

12.
Aqueous suspensions of two barium titanate (BaTiO3) powders, with 100 and 500 nm nominal size, were found to be stabilized by a predominantly steric mechanism when using a polyelectrolyte surfactant, an ammonium salt of poly(methacylate) (PMA-NH4). Considerable amounts of barium ions were shown to readily dissolve from BaTiO3 powders in an aqueous environment, even without the addition of acid or base. This barium dissolution obscured the accurate measurement of the isoelectric point of the two powders. Suspension stabilization was observed to occur at basic pH when using PMA-NH4. Concentrated suspensions of each individual powder exhibited shear thinning behavior, with the onset of shear thickening occurring at relatively high shear rates. Suspensions containing 85 vol% coarse/15 vol% fine powders demonstrated the lowest apparent viscosity for a given solids loading, while the highest sintered density was obtained with a mixture of 70 vol% coarse/30 vol% fine, when sintering at 1300°C for 2 h (97.4% of theoretical, slip cast from a suspension containing 50 vol% solids).  相似文献   

13.
Evolution of interfacial microstructure between BaTiO3 and the binary glasses used as frits in thick-film technology has been studied. Possible reaction mechanisms for the interfacial compounds have been determined by comparing the results of the sintering study with the reaction of BaTiO3, powder with glass powders. The interfacial microstructure can be divided into two types. The first type of interfacial microstructure is observed for glasses rich in PbO or Bi2O3 network modifiers and is characterized by the penetration of glass into the BaTiO3 grain boundaries, accompanied by incorporation of Pb into the perovskite lattice. The second type of interfacial microstructure is observed for glasses rich in B2O3 or SiO2 network formers and is characterized by the formation of interfacial compounds.  相似文献   

14.
The shell thickness of a BaTiO3 ceramic with a core–shell structure has been measured by means of synchrotron X-ray diffraction (XRD). BaTiO3 ceramic is known from transmission electron microscope (TEM)/energy dispersive X-ray spectroscopy (EDS) observations to have an inhomogeneous microstructure with cores of a pure BaTiO3 and shells doped with additives. It is also known, from XRD observations, that the BaTiO3 cores have a tetragonal lattice structure and the shells are pseudocubic. We have estimated the shell thickness d from the full-width at half-maximum (FWHM) of the cubic ( 400 )c peak, using Scherrer's equation. The shell thickness d cal was also evaluated from the volume fraction of tetragonal BaTiO3 using a spherical core–shell model. The two values thus determined agree well, confirming that the BaTiO3 ceramic specimens have a core–shell structure. Our results show that synchrotron XRD is a simple and effective tool for quantitative analysis of the core–shell structure. It enables us to understand quantitatively the relationship between the microstructure and the dielectric properties of BaTiO3 ceramics.  相似文献   

15.
BaTiO3 nanofibers were prepared by electrospinning. The morphology of synthesized BaTiO3 nanofibers was investigated under different heat treatment conditions. The phase transformations in BaTiO3 nanofibers were monitored using Raman spectroscopy. It has been found that the Curie temperature of BaTiO3 nanofibers increased to 220°C, which is notably higher than the bulk BaTiO3 ceramics.  相似文献   

16.
Fe3O4–BaTiO3 composite particles were successfully prepared by ultrasonic spray pyrolysis. A mixture of iron(III) nitrate, barium acetate and titanium tetrachloride aqueous solution were atomized into the mist, and the mist was dried and pyrolyzed in N2 (90%) and H2 (10%) atmosphere. Fe3O4–BaTiO3 composite particle was obtained between 900° and 950°C while the coexistence of FeO was detected at 1000°C. Transmission electron microscope observation revealed that the composite particle is consisted of nanocrystalline having primary particle size of 35 nm. Lattice parameter of the Fe3O4–BaTiO3 nanocomposite particle was 0.8404 nm that is larger than that of pure Fe3O4. Coercivity of the nanocomposite particle (390 Oe) was much larger than that of pure Fe3O4 (140 Oe). These results suggest that slight diffusion of Ba into Fe3O4 occurred.  相似文献   

17.
The strength of BaTiO3 which had been hot-pressed to ∼99% of theoretical density and tested above the Curie temperature was—9000 psi greater than at room temperature. This measured difference in strength is attributed to internal stress from the cubic→tetragonal phase transformation. Correction of measured strength to zero porosity predicts internal stresses of ∼11,000 psi, in good agreement with the dielectric theory for fine-grain BaTiO3. The internal stress is nearly independent of grain size in the range ∼1.5 to 150 μm, showing that 90° domains do not reduce internal stresses causing failure. Lower internal stress in commercial BaTiO3 is attributed to greater porosity, large flaw sizes, and possibly the effects of additives.  相似文献   

18.
Solid solution formation in the system BaTiO3—KnbO3 was established by X-ray diffraction and dielectric measurements. Solid solutions with cubic symmetry were observed in the composition range from 4 to 90 mole % KnbO3 at room temperature. The lattice parameter for the BaTiO3 solid solutions increased with increasing KNbO3; that for the KnbO3 solid solutions decreased with the addition of BaTiO3. A distinct discontinuity in lattice parameter was observed at the composition containing about 65 mole % BaTiO3. Dielectric measurements were made from-195° to 400°C. The cubic-tetragonal transition temperature of BaTiO3 was rapidly lowered with increasing addition of KNbO3, whereas the two lower phase transition temperatures were raised. All three phase transitions of KnbO3 were rapidly lowered with increasing addition of BaTiO3. The observed phase transitions, lattice parameters, and electron probe data suggest a complex region in the subsolidus which extends from 35 to about 75 mole % KNbO3.  相似文献   

19.
BaTiO3 glass-ceramic thin films were deposited on silicon substrates by the sol–gel method. The films exhibited a mixed structure of glass phase and BaTiO3 grains tens of nanometers in diameter, and had a high dielectric constant, low leakage current, and dielectric loss. An interesting self-mending phenomenon for microcracks due to the fluidity of the glass phase during the annealing process was observed in the films. The effects of the existence of the self-mended microcracks on electrical properties were evaluated. Our experimental results indicate the potential value of BaTiO3 glass-ceramic thin films for integrated high-dielectric-constant media.  相似文献   

20.
The literature on LiF-fluxed BaTiO3 has shown substantially lower sintering temperatures compared to that of unfluxed BaTiO3. In an effort to understand densification behavior in this system, shrinkage was studied for various Ba: Ti ratios and 2 wt% LiF additions. Sintering of BaTiO3 with LiF is sensitive to the Ba:Ti ratio. Excess Ba reduced the sintering temperature and increased the fired bulk density. The starting powder stoichiometry, net Ba:Ti ratio, and addition of LiF appear to be independently important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号