首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A new technique of in situ rolling friction stir welding (IRFSW) has been developed to reduce the residual stress and distortion. It can eliminate the weld flashes and improve corrosion resistance of the FSW seam. A new kind of FSW tool consisting of rolling balls was designed to achieve IRFSW. The residual stresses across the weld were measured by ultrasonic stress measurement experimental installation. The 3·5%NaCl solution was used to corrode the surface of welded joint, and corrosion current and potential were determined by an electrochemical analyser. The results shown that the residual tensile stress was reduced, the weld flashes were eliminated, and the corrosion resistance was improved. By applying IRFSW, the reduction of distortion was ~34·4% compared with that of conventional FSW joint for aluminium plant with 3 mm in thickness and 300 mm in length.  相似文献   

2.
ABSTRACT

The dissimilar welds between aluminium (Al) alloy, A6061-T6, and stainless steel, type 304, were fabricated by a friction stir welding (FSW) technique. The FSW tool was offset to Al side and the probe was inserted only into Al plate. The softening occurred in Al side due to the heat input during FSW, while the hardness increased by the post-ageing treatment. Tensile strength of dissimilar weld also increased about 8.5% by the post-ageing. The residual stresses were measured based on the cos α method. The residual stresses parallel to the weld line, σxr, were predominantly tensile, while those perpendicular to the weld line, σyr, were compressive. Post-ageing treatment had little effect on the residual stresses.  相似文献   

3.
对搅拌摩擦焊过程中搅拌头速度变化进行分析,建立了考虑搅拌摩擦焊过程中焊缝产热的热源模型.对2024铝合金搅拌摩擦焊温度场和应力场进行了三维有限元模拟,表明焊缝两侧温度和应力分布的不对称现象不明显,主要由于焊接速度远小于搅拌头转速所致,但随着焊接速度加快,这种不对称现象逐渐加强.焊接过程中焊缝中心温度低于搅拌头边缘温度,焊接前方和两侧均为压应力,后方为拉应力;焊接结束后与搅拌头接触区的横向和纵向残余应力为较大拉应力,远离焊缝残余应力较小;沿厚度方向上,横向和纵向残余应力均逐渐降低.有限元计算结果与短波长X射线应力测试结果进行对比,结果表明,二者趋势基本吻合.  相似文献   

4.
Abstract

The authors investigate the efficacy of applying rolling pressure along the weld line in thin butt welds produced using friction stir welding (FSW) as a means of controlling the welding residual stresses. Two cases are examined and in each case, comparison is made against the as welded condition. First, for FSW of AA 2024 aluminium alloy, roller tensioning was applied during welding using two rollers placed behind and either side of the FSW tool. Very little effect was seen for the down forces applied (0, 50, 75 kN). Second, for FSW AA 2199 aluminium alloy, post-weld roller tensioning was applied using a single roller placed directly on the FS weld line. In this case, significant effects were observed with increased loading, causing a marked reduction in the longitudinal tensile residual stress. Indeed, a load of just 20 kN was sufficient to reverse the sign of the weld line residual stress. Only slight differences in Vickers hardness were observed between the different applied loads. Furthermore, unlike some methods, this method is cheap, versatile and easy to apply.  相似文献   

5.
Abstract

This paper investigates the potential of mechanical tensioning (MT) to reduce the magnitude of residual stresses in welds and to eliminate buckling distortion. Both friction stir (FSW) and arc welds have been produced from the aluminium alloy AA2024, with different levels of tensile stress applied along the weld line either during or after welding. The resulting welds have been characterised in terms of out of plane distortion, residual stresses and microstructure. Buckling distortion was eliminated by stretching plates to between 35 and 70% of the yield stress of the material during welding. For each set of welding parameters investigated, an optimum tensioning stress has been identified, which eliminates the tensile residual stress peak across the weld zone, along with distortion. This optimum tensioning stress increases in line with the heat input of the welding process. When MT stresses are increased beyond this optimum value, then distortion arises once more and a band of compressive stress is formed across the weld zone.  相似文献   

6.
The effects of laser, and shot peening on the residual stresses in friction stir welds (FSW) has been investigated. The surface residual stresses were measured at five different locations across the weld in order to produce an adequate residual stress profile. The residual stresses before and after sectioning the coupon from the welded plate were also measured, and the effect of coupon size on the residual stress relaxation was determined and characterized. Measurements indicate that residual stresses were not uniform along the welded plate, and large variation in stress magnitude could be exhibited at various locations along the FSW plate. Sectioning resulted in significant residual stress relaxation in the longitudinal direction attributed to the large change in dimensions in this direction. Overall, laser and shot peening resulted in a significant reduction in tensile residual stresses at the surface of the specimens.  相似文献   

7.
Friction stir welding (FSW) is a relatively new welding process that may have significant advantages compared to the fusion processes as follow: joining of conventionally non-fusion weldable alloys, reduced distortion and improved mechanical properties of weldable alloys joints due to the pure solid-state joining of metals. In this paper, a three-dimensional model based on finite element analysis is used to study the thermal history and thermomechanical process in the butt-welding of aluminum alloy 6061-T6. The model incorporates the mechanical reaction of the tool and thermomechanical process of the welded material. The heat source incorporated in the model involves the friction between the material and the probe and the shoulder. In order to provide a quantitative framework for understanding the dynamics of the FSW thermomechanical process, the thermal history and the evolution of longitudinal, lateral, and through-thickness stress in the friction stirred weld are simulated numerically. The X-ray diffraction (XRD) technique is used to measure the residual stress of the welded plate, and the measured results are used to validate the efficiency of the proposed model. The relationship between the calculated residual stresses of the weld and the process parameters such as tool traverse speed is presented. It is anticipated that the model can be extended to optimize the FSW process in order to minimize the residual stress of the weld.  相似文献   

8.
Abstract

As a solid state joining technique, friction stir welding (FSW) can produce high strength, low distortion joints efficiently. Compared to fusion welding, residual stresses in FSW joints are expected to be low due to a relatively low heat input. However, apart from the heat input, the force from the tool also plays an important role in the development of welding stresses. In the present paper, a semicoupled thermomechanical finite element model containing both thermal load and mechanical load was established to simulate the development of welding stresses during FSW process; an autoadapting heat source model was employed in the thermal analysis; the fixture was also included in the mechanical analysis model. The simulation results showed that due to the effect of the tool force, the longitudinal residual tensile stresses became smaller and were asymmetrically distributed at different sides of the weld centre; the peak of the tensile residual stresses at the retreating side was lower than that at the advancing side. Calculated and experimental results were compared.  相似文献   

9.
高熔点材料的搅拌摩擦焊接技术   总被引:1,自引:1,他引:0       下载免费PDF全文
刘会杰  周利 《焊接学报》2007,28(10):101-104
通过焊具设计、接头微观组织与性能、焊接温度场和残余应力、热源辅助的搅拌摩擦焊(FSW)几个方面,全面介绍了高熔点材料搅拌摩擦焊技术的研究现状.结果表明,合适的搅拌头材料为钨铼(W-Re)合金和多晶立方氮化硼(PCBN);采用合适的焊具设计和工艺参数,可以得到具有良好微观组织、高强度的FSW接头;在模拟搅拌摩擦焊温度场和接头残余应力时,应依据焊接过程实际进一步完善物理模型;引入辅助热源有利于高熔点材料焊缝成形并提高焊具使用寿命.  相似文献   

10.
A thermo-mechanical model is developed to predict the material deformations and temperature histories in the friction stir welding (FSW) process. Based on this model, the effects of the welding parameters on temperatures and material behaviors are investigated. Numerical results indicate that the maximum temperature in the FSW process can be increased with the increase of the rotating speed. The increase of the welding speed can lead to the obvious increase of the efficient input power for FSW system. The material particles on the top surface do not enter into the wake and just pile up at the border of the wake at the retreating side and this is the reason for the formation of the weld fash in FSW. Both the increase of the rotating speed and the decrease of the welding speed can lead to the increase of the stirring effect of the welding tool, which can improve the friction stir weld quality. But when the rotating speed is increased, the weld fash becomes more obvious. When the welding speed becomes higher, the rotating speed must be increased simultaneously to avoid any possible welding defects such as void. The simultaneous increase of the rotating and the translating speeds of the welding tool can lead to the increase of the residual stress.  相似文献   

11.
超声冲击处理工艺对Q345焊接热影响区残余应力的影响   总被引:1,自引:1,他引:1  
目的降低Q345焊接热影响区的残余应力。方法假设Q345对接焊缝两侧热影响区对称位置的表面残余应力一致,并采用盲孔法测量进行验证。采用超声冲击设备对焊缝一侧热影响区进行不同工艺参数的冲击处理,并测量焊缝两侧的残余应力值。对比焊缝两侧残余应力大小,并以消减率评价残余应力的消除效果。结果焊缝两侧热影响区对称位置的表面残余应力差值不超过最大主应力值的7.5%。超声冲击处理使热影响区的表面拉应力转变为压应力,消减率达到88%~130%。冲击时间一定,冲击电流的增大使残余应力消减率增大,但消减率增加的趋势变小。冲击电流一定,冲击时间增大时,残余应力的消减率变化不明显。结论可以认为焊缝两侧热影响区对称位置的应力值相等。提高冲击电流能够提高冲击力,使热影响区发生更大的塑性变形及位错结构变化,进而提高残余应力的消减率。但由于加工硬化的影响,消减率增加的趋势减小。超声冲击电流一定时,冲击力是一定的,提高冲击时间对消除率并没有明显的影响。  相似文献   

12.
Tensile residual stresses at the surface of welded components are known to compromise fatigue resistance through the accelerated initiation of microcracks, especially at the weld toe. Inducement of compression in these regions is a common technique employed to enhance fatigue performance. Transformation plasticity has been established as a viable method to generate such compressive residual stresses in steel welds and exploits the phase transformation in welding filler alloys that transform at low temperature to compensate for accumulated thermal contraction strains. Neutron and X-ray diffraction have been used to determine the stress profiles that exist across the surface of plates welded with low transformation temperature welding alloys, with a particular focus on the stress at the weld toe. For the first time, near surface neutron diffraction data have shown the extent of local stress variation at the critical, fusion boundary location. Compression was evident for the three measurement orientations at the fusion boundaries. Compressive longitudinal residual stresses and tensile transverse stresses were measured in the weld metal.  相似文献   

13.
利用三维有限元分析软件,模拟了BT20钛合金薄板焊态和焊后电子束局部热处理的实际焊接温度场以及残余应力的分布。结合数值计算,讨论了不同的热处理方式以及热处理工艺参数对焊接接头残余应力分布的影响。结果表明,在钛合金薄板焊缝的背面进行电子束局部热处理,可以显著降低焊缝中心处的残余拉应力。数值计算结果还表明,在其它工艺参数相同的情况下,随着局部热处理加热宽度和加热时间的增加,焊缝及近缝区的纵向残余应力随之降低,同时产生残余应力的范围也随之增大。  相似文献   

14.
2195-F态铝锂合金TIG焊和FSW焊后残余应力分析   总被引:2,自引:2,他引:0       下载免费PDF全文
采用盲孔法和压痕法,分别对2195-F态铝锂合金手工TIG焊和FSW焊后残余应力进行测量. 结果表明,盲孔法的测量值普遍高于压痕法. 两种焊接方法,近焊缝区的纵向应力均高于横向应力;横向应力整体表现为压应力或小于50 MPa的拉应力;纵向应力在热影响区附近表现为大于焊缝的拉应力. 焊缝区附近,手工TIG焊纵向残余应力大于FSW,且纵向残余应力表现为较大的拉应力,最大值接近于接头的屈服强度;焊缝区外,手工TIG焊和FSW残余应力值相差不大,其横向残余应力基本表现为很小的拉应力或者压应力.  相似文献   

15.
Zigzag line is a common defect in friction stir welding(FSW) joint.The formation mechanism of the zigzag line in Al-Cu alloy FSW joint and its influence on the microstructure and mechanical properties during post weld heat treatment(PWHT) were studied by scanning electron microscopy(SEM),microhardness and tensile tests.It is found that the occurrence of zigzag line for PWHT joint is determined by PWHT process which in nature depends on residual stress and thermal stress of FSW joint.The optimization of PWHT process to reduce the residual and thermal stress can trigger for the deterioration of mechanical properties of PWHT joints with zigzag line.No obvious decrease of tensile properties is observed for T6-450 and T6-495 joints although zigzag line appears in the weld.PWHT determines the sizes of zigzag line cracks and consequently determines the fracture location and characteristics of FSW joint.  相似文献   

16.
This paper presents a new thermomechanical model of friction stir welding which is capable of simulating the three major steps of friction stir welding(FSW) process, i.e., plunge, dwell, and travel stages. A rate-dependent Johnson–Cook constitutive model is chosen to capture elasto-plastic work deformations during FSW. Two different weld schedules(i.e., plunge rate, rotational speed, and weld speed) are validated by comparing simulated temperature profiles with experimental results. Based on this model, the influences of various welding parameters on temperatures and energy generation during the welding process are investigated. Numerical results show that maximum temperature in FSW process increases with the decrease in plunge rate, and the frictional energy increases almost linearly with respect to time for different rotational speeds. Furthermore, low rotational speeds cause inadequate temperature distribution due to low frictional and plastic dissipation energy which eventually results in weld defects. When both the weld speed and rotational speed are increased, the contribution of plastic dissipation energy increases significantly and improved weld quality can be expected.  相似文献   

17.
Consolidated UNS S32205 duplex stainless steel joints welds were performed using a friction stir welding (FSW) process. An experimental set-up was used to record the thermal history of duplex stainless steel FSW joint. For points at equal distance from the weld centreline, temperature measured near the beginning of the weld was lower than that measured in the middle of the welded joint. This was attributed to a non-stationary transfer condition. FSW thermal cycle showed shorter time spent at elevated temperature compared that presented by fusion welding, indicating less propensity to detrimental second phase precipitation. To support temperature measurements with thermocouples, a three-dimensional finite element thermal model of FSW was implemented, which provided a good agreement with experimental data.  相似文献   

18.
Abstract

Flash-butt welding is used in the manufacture of continuously-welded rails. Finished welds typically exhibit high tensile residual stresses in the rail web and at the upper surface of the rail foot, which may increase the risk of fatigue failure in service. An understanding of the influence of the welding process, including post-weld cooling, on the residual stress distribution is necessary to improve the performance of flash-butt welds by post-weld heat treatment (PWHT), since incorrect treatment may have adverse effects on both residual stress and weld material characteristics. A finite element model has been developed to simulate post-weld cooling in flash-butt welded AS60 kg m–1 rail. Computed thermal histories for normal (air) cooling, rapid PWHT, and accelerated cooling (water spray) were used as inputs to calculate sequentially coupled stress–time histories, including phase transformations. In addition, the localised influence of the initiation time for rapid PWHT, after final upset, on the reduction of tensile residual stresses was investigated. Heating the rail foot immediately after final upset reduced tensile residual stresses in the web region of the weld. Preliminary numerical predictions showed that water quenching the entire weld region too soon after the austenite–pearlite transformation is completed can induce further tensile residual stresses without affecting the microstructure. The results of the numerical analysis can be used to modify the flash-butt welding procedure to lower residual stress levels, and hence improve weld performance.  相似文献   

19.
Abstract

A methodology has been developed using a non-destructive ultrasonic technique for measuring surface/subsurface residual stresses in 7 mm thick AISI type 316LN stainless steel weld joints made by activated tungsten inert gas and multipass tungsten inert gas welding processes. Measurement of residual stresses using an ultrasonic technique is based on the effect of stresses on the propagation velocity of elastic waves. Critically refracted longitudinal L CR wave mode was employed and accurate transit time measurements were made across the weld joints. Quantitative values of the longitudinal residual stresses across the weld joints were estimated from the measured transit times and predetermined value of acoustoelastic constant for AISI type 316LN stainless steel. The nature of the residual stress profiles and their variations across the two types of weld joints were compared and interpreted.  相似文献   

20.
In the paper, the results of a wide experimental campaign on friction stir welding (FSW) of aluminum alloys are reported. The attention was focused on the through-thickness residual stresses that occur on aluminum joints, after the welding process. In detail, using the hole-drilling method the residual stresses distribution in the zone close to the tool shoulder border of the joint advancing side, has been investigated; four different aluminum alloys and three different process conditions have been considered. The experimental analysis has shown that unlike traditional welding processes, the residual stresses are negative in the surface of the examined zone, and increase with depth until values of about 100–150 MPa that occur at a depth of about 0.5–1.0 mm. As expected, the maximum value of the residual stresses induced by the FSW process influences the mechanical behavior of the joint significantly, as it has been observed for the AA6082-T6 aluminum alloy by considering its static and fatigue resistance.Such results corroborate that the hole-drilling method, widely employed in the industrial field due to its simplicity and low cost, can be used for an accurate estimation of the maximum residual stresses that occur in an aluminum butt joint obtained by friction stir welding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号