首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research article reported the weldability, microstructure and mechanical properties of the dissimilar combinations of nickel alloys such as Monel 400 and Hastelloy C276. Multi-pass pulsed current gas tungsten arc (PCGTA) welding was employed for joining these dissimilar metals using ERNiCrMo-3 filler. Interface microstructures showed the absence of unmixed zone at the HAZ of both the sides. It was evident from the studies that all the tensile failures occurred at Monel 400 side. The average impact toughness portrayed by these dissimilar weldments was found to be 41 J. Bend test results showed that these dissimilar combinations offer augmented ductility. The outcomes of the study substantiated the use of current pulsing for the successful joints of Monel 400 and Hastelloy C276 by correlating the mechanical and metallurgical properties.  相似文献   

2.
Two components of a water pump installed in a casting shop for recirculation of cooling water experienced severe and accelerated corrosion after two months in service. The received pieces of the water pump assembly were a shaft and a conical tube, which was used as connector with the impeller. The shaft exhibited circumferential pitting corrosion behavior in specific areas where it was in contact with another pump component. Light optical microscopy and Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy were mainly used as analytical techniques for corrosion process evaluation and for the identification of the morphology and chemical composition of corrosion products, in order to draw safe conclusions concerning the type of the corrosion and the respective root-source. The main findings of the investigation indicated that pitting corrosion was the dominant failure mechanism for both water pump components influenced by the presence of aggressive environmental conditions, characterized by the presence of chlorides and sulfates that accelerate corrosion process above a certain temperature range (T > 50–55 °C).  相似文献   

3.
In this work the effect of mineral admixtures on the thaumasite form of sulfate attack in limestone cement concrete is studied. Additionally, the effect of the type of sand (calcareous or siliceous) and the storage temperature is investigated. Limestone cement, containing 15% limestone, was used. Concrete specimens were prepared by replacing a part of cement with the studied minerals. The specimens were immersed in a 1.8% MgSO4 solution and stored at 5 °C and 25 °C for 3 years. A well designed concrete made with limestone cement and fly ash, blastfurnace slag or metakaolin seems to have the ability to withstand thaumasite form of sulfate attack. The addition of natural pozzolana presented only a limited improvement of concrete’s sulfate resistance. The type of the sand and its cohesion with the cement paste has a remarkable effect on the performance of concrete at low temperature. Finally, no damage was observed in the specimens exposed to sulfate solution at 25 °C.  相似文献   

4.
The hydrodynamics of solid-liquid suspension process in a stirred tank with a dual rigid impeller, a dual rigid-flexible impeller, and a dual punched rigid-flexible impeller were investigated using computational fluid dynamics (CFD) simulation. A classical Eulerian-Eulerian approach coupled with standard k-ε turbulence model was employed to simulate solid-liquid turbulent flow in the stirred tank. The multiple reference frame (MRF) approach was used to simulate impeller rotation. The effects of impeller type, impeller speed, flexible connection piece width/length of dual rigid-flexible impeller, aperture size/ratio of dual punched rigid-flexible impeller, particle diameter, and liquid viscosity on the homogeneity degree of solid-liquid system were investigated. Results showed that the homogeneity degree of solid-liquid system increased with an increase in impeller speed. A long and wide flexible connection piece was conductive to solid particles suspension process. Larger particle diameter resulted in less homogenous distribution of solid particles. An increase in liquid viscosity was beneficial to maintain solid particles in suspension state. The optimum aperture ratio and aperture diameter were 12% and 8 mm, respectively, for solid particles suspension process. It was found that dual punched rigid-flexible impeller was more efficient in terms of solid particles suspension quality compared with dual rigid impeller and dual rigid-flexible impeller under the same power consumption.  相似文献   

5.
A helium evaporator for obtaining 1 K temperature has been built and tested in laboratory. This will function primarily as the precooling stage for the circulating helium isotopic gas mixture. This works on evaporative cooling by way of pumping out the vapour from the top of the pot. A precision needle valve is used initially to fill up the pot and subsequently a permanent flow impedance maintains the helium flow from the bath into the pot to replenish the evaporative loss of helium. Considering the cooling power of 10 mW @1.0 K, a 99.0 cm3 helium evaporator was designed, fabricated from OFE copper and tested in the laboratory. A pumping station comprising of a roots pump backed by a dry pump was used for evacuation. The calibrated RuO thermometer and kapton film heater were used for measuring the temperature and cooling power of the system respectively. The continuously filled 1 K bath is tested in the laboratory and found to offer a temperature less than 1.0 K by withdrawing vapour from the evaporator. In order to minimize the heat load and to prevent film creep across the pumping tube, size optimization of the pumping line and pump-out port has been performed. The results of test run along with relevant analysis, mechanical fabrication of flow impedance are presented here.  相似文献   

6.
In present study, effect of sintering temperature on density and hardness of 3 mol% yttria-stabilized tetragonal zirconia (referred to as TZ-3Y) composite reinforced with alumina whiskers (5, 10, 15 and 20 wt.%) has been studied. Initially, Ammonium Aluminum Carbonate Hydroxide (AACH) whiskers were added in TZ-3Y composite and transformed into alumina during sintering performed at different temperatures i.e. 1400, 1500 and 1650 °C. Results revealed that for all sintering temperatures, with increase in whisker concentration, sintered density decreased and hardness increased conversely. Maximum hardness of 14.47 GPa was achieved with 10 wt.% whiskers addition when sintered at 1500 °C. However, with addition of CTAB (1 wt.%) as deflocculating agent the hardness was further improved to 15.11 GPa. While sintering at 1650 °C a decrease in hardness was observed. It was mainly due to high temperature morphological change of whiskers i.e. transformation of whiskers into alumina rich grains.  相似文献   

7.
The role of Cr/Cr oxide thin film coatings on HK40 steel substrates during exposure to C-rich atmospheres was investigated. The coatings were produced via reactive magnetron sputtering as an alternative method to protect these materials against metal dusting. Coated and uncoated substrates were exposed at 1073 K to an Ar + CH4 atmosphere with residual oxygen for 10, 30, 60 min and 50 h. Analysis of the products formed on both samples indicated that attack in the uncoated samples involves both C and O from the atmosphere together with Cr, Fe, and Ni outward diffusion in which the dendritic structure plays an important role. The presence of even a residual amount of oxygen in the carburizing atmosphere had a remarkable effect on the corrosion mechanism in these samples as well. In the coated samples, the Cr/Cr oxide film minimized internal alloy attack not only by limiting carbon ingress, but also minimizing the role of oxygen and outward Cr (Fe and Ni) diffusion from the alloy.  相似文献   

8.
We report on detailed spectroscopic investigations and efficient visible upconversion laser operation of Er3+:LiLuF4. This material allows for efficient resonant excited-state-absorption (ESA) pumping at 974 nm. Under spectroscopic conditions without external feedback, ESA at the laser wavelength of 552 nm prevails stimulated emission. Under lasing conditions in a resonant cavity, the high intracavity photon density bleaches the ESA at 552 nm, allowing for efficient cw laser operation.We obtained the highest output power of any room-temperature crystalline upconversion laser. The laser achieves a cw output power of 774 mW at a slope efficiency of 19% with respect to the incident pump power delivered by an optically-pumped semiconductor laser. The absorption efficiency of the pump radiation is estimated to be below 50%.To exploit the high confinement in waveguides for this laser, we employed femtosecond-laser pulses to inscribe a cladding of parallel tracks of modified material into Er3+:LiLuF4 crystals. The core material allows for low-loss waveguiding at pump and laser wavelengths. Under Ti:sapphire pumping at 974 nm, the first crystalline upconversion waveguide laser has been realized. We obtained waveguide-laser operation with up to 10 mW of output power at 553 nm.  相似文献   

9.
A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2–10 L/min, into a head of 0.5–3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50–100 days without maintenance.  相似文献   

10.
This paper presents a microstructural analysis of mortars made with OPC (C3A=6%) and two SRPCs (C3A < 2% and C3S=40% and 74%) containing 20% of limestone filler. Specimens analysed were immersed in Na2SO4 solution (5% w/w or 0.352 M) with pH control during two years at 20 ± 2 °C. The evolution of attack was determined using XRD semi-quantitative analysis on the material obtained by wearing in layers by millimetre to millimetre of the specimens. Complementary SEM and EDS studies were carried out to confirm the presence of thaumasite. Results show that OPC and high-C3S SRPC containing 20% limestone filler were found to be more susceptible to sulphate attack than the corresponding plain cement. The attack was characterised by the inward front leading first to the formation of ettringite, later formation of gypsum and finally thaumasite formation, when the decalcification of the mortar lead to the breakdown of C–S–H, providing the required silica. The reaction sequence in Portland limestone cements is essentially the same as in plain Portland cements. The main change is that thaumasite is formed at later stages with decomposition of the ettringite formed during the firsts stage of attack. In SRPC with low C3S, the attack was limited to the first millimetres and the thaumasite was not detected.  相似文献   

11.
The present paper describes three failure cases of metallic components handling wet-process phosphoric acid at ambient temperatures in a phosphate fertilizer plant. All the three cases of failure were related not directly to the corrosive environment rather to wrong selection or inferior quality of materials. In the first case, pipeline of stainless steel 316L failed due to inferior quality of material used in the elbow region. The elbow material was not a low carbon grade stainless steel and was also in heavily sensitized condition which led to intergranular corrosion and intergranular cracking. The other two cases were related to failures of pump sleeves made up of cast alloys equivalent to stainless steel 316 and Hastelloy C-276 respectively. SS 316 showed through-wall pitting and cracking while Hastelloy C-276 had undergone extensive corrosion along the interdendritic boundaries. Both the materials contained high carbon content which led to heavy precipitation of carbides (Cr-rich carbides in SS 316 and Mo-rich carbides in C-276) along inter-dendritic boundaries during solidification of the casting reducing their corrosion resistance. Recommendations to avoid such failures are also suggested.  相似文献   

12.
In this paper, austempered ductile iron has been evaluated as an alternative to steel for perforated plates applied in the ballistic protection of military vehicles. The austempering was performed in lower and higher austempering ranges in order to obtain two types of austempered ductile iron: one with a higher strength, and the other with a higher ductility. Perforated plates having two different thicknesses of 7 and 9 mm were mounted in front of basic armour and 12.7 × 99 mm armour – piercing incendiary ammunition was fired from 100 m. It was shown that the austempered ductile iron material austempered at a lower temperature has superior ballistic resistance, providing a full (five out of five armour – piercing incendiary shots stopped) ballistic resistance if combined with 13 mm basic armour plate. The thicker austempered ductile iron perforated plate provides more significant penetrating core damage, and therefore, lower basic plate damage. On the other hand, the thinner austempered ductile iron material perforated plate can be considered optimal due to its lower weight and higher mass effectiveness. In austempered ductile iron material austempered at a higher temperature, besides a lower hardness, bulk retained low-carbon metastable austenite transforms into martensite through strain induced mechanism, causing a partial brittle fracture.  相似文献   

13.
哈氏C-276合金与16MnR钢在盐酸中的电偶腐蚀行为   总被引:1,自引:0,他引:1  
郝丽敏  李宁  黎德育 《材料保护》2011,44(1):49-51,8
石化厂急冷塔中的哈氏C-276合金和16MnR钢易形成电偶对,在塔中HCl气氛下发生腐蚀。测定了哈氏C-276合金与16MnR钢在10%盐酸中的自腐蚀速率、电偶腐蚀速率和稳态极化曲线,探讨了偶接时间、阴阳极面积比、环境温度及腐蚀液流速对阳极电流密度的影响。结果表明:2种金属偶接后,阴极哈氏C-276合金腐蚀速率得到抑制,阳极16MnR钢腐蚀速率急剧增大;2种金属自腐蚀电位相差超过200 mV,电偶电位接近16MnR钢的自腐蚀电位;随偶接时间延长,电偶电流不断衰减,24 h后趋于稳定;阳极电流密度随阴阳极面积比增大、温度升高而增大,但呈非线性增长,一定程度后增长趋势变缓;流动的腐蚀液中的阳极电流密度大于静止腐蚀液中的。  相似文献   

14.
Magnesium alloys possess highly limited room-temperature formabilities. This presents a technological barrier to the fabrication of minitubes for biodegradable vascular stents. The research was aimed at developing precision forming technology to fabricate ZM21 magnesium alloy minitubes with a refined microstructure. A multipass cold drawing process with a moving mandrel was successfully developed to convert seamless hollow billets through five passes of cold drawing and an interpass annealing treatment into minitubes with an outside diameter of 2.9 mm and a wall thickness of 0.217 mm, ready for laser cutting into vascular stents. It was found that a cumulative reduction in cross-section area as much as 32% could be applied to the material without causing fracture. However, a further reduction in cross-section area required annealing at 300 °C for 1 h to change a twinned microstructure into a recrystallized grain structure and to regain formability. The interpass annealing treatment after the fourth pass led to a reduction in drawing force by 22%, in comparison with the drawing force at the fourth pass of drawing. The variations in the outside diameter and wall thickness of the minitubes could be kept within 5 and 12 μm, respectively. Further research is directed toward improvements in dimensional precisions.  相似文献   

15.
The tritium source in the Karlsruhe Tritium Neutrino Experiment (KATRIN) will deliver 1011 β decay electrons per second, in order to determine the mass of the electron antineutrino through analysing the tritium β spectrum. The source is built of a 10 m long beam tube of 90 mm inner diameter, which is operated at 30 K. Gaseous tritium is injected through a central injection chamber and diffuses towards the tube ends, where it is pumped by large turbomolecular pumps and further processed in a closed tritium loop. In order to achieve the KATRIN sensitivity of 0.2 eV/c2, the decay rate in the source (and hence the tritium density profile) must be stable to a level of ±0.1%. As the density profile is influenced by the beam tube conductance, both the temperature stability and the temperature homogeneity must be within a range of ±0.03 K at 30 K. A thermosiphon with saturated neon was developed for this purpose, with horizontal evaporator tubes connected all along the 10 m beam tube. The system behaviour was tested in a 12 m long test cryostat, containing the original beam tube with the adjacent pumping chambers, as well as the cooling circuits and the thermal shields. The so-called “Demonstrator” was operated in the Tritium Laboratory Karlsruhe (TLK) being connected to the cryogenic infrastructure of KATRIN. The temperature stability was found a factor 20 better than specified, achieving a standard deviation of only 1.5 mK/h, which corresponds to ΔT/T = 5 × 10−5 h−1 relative stability at 30 K. The ±0.03 K temperature homogeneity along the 10 m beam tube was not yet reached, because of an increased heat load through the pump ports. The repeatability of the temperature measurement with vapour pressure sensors was within ± 0.004 K.  相似文献   

16.
We report, for the first time to our knowledge, on the spectroscopic properties and continuous-wave laser performance of Yb0.14:Y0.77Gd0.09Ca4O(BO3)3, a mixed rare earth calcium oxyborate Yb-ion crystal. Under simple end-pumping conditions with a 976-nm diode, efficient CW laser operation was demonstrated at room temperature, producing an output power of 14.1 W at 1084.4 nm with an optical-to-optical efficiency of 48%; while operating around 1045 nm, the laser could generate an output power as high as 23.0 W, with optical-to-optical and slope efficiencies amounting, respectively, to 57% and 70% with respect to incident pump power. The polarized absorption and emission cross sections are also presented. The impressive results demonstrated reveal the great potential of these mixed oxyborates in developing new promising Yb-ion laser crystals.  相似文献   

17.
The objective of this study was to evaluate the effect of heat treatment on surface roughness and hardness of four wood species, namely black alder (Alnus glutinosa L.), red oak (Quercus falcata Michx.), Southern pine (Pinus taeda L.) and yellow poplar (Liriodendron tulipifera). Samples were exposed to heat treatment schedules having two temperature and exposure levels of 120 °C and 190 °C for 3 and 6 h, respectively. Average hardness value of red oak samples exposed to a temperature of 190 °C for 6 h was 41.7% lower than that recorded before the heat treatment. Temperature of 190 °C produced 7.9% lower hardness values for black alder with the increased exposure time from 3 h to 6 h. No significant differences were found between same type of Southern pine and yellow poplar specimens before and after the heat treatment in terms of their hardness values. Among the four species considered in this study red oak having the most porous anatomical structure showed the roughest surface. An improvement in surface quality (Ra) with 7.46% with extending exposure time from 3 h to 6 h at the temperature level of 190 °C was noticed. However all four types of wood species kept in the oven at 190° for 6 h presented smoother surface quality. It was found that increased temperature from 120 °C to 190 °C for both exposure times showed significant differences from the surface quality of nontreated samples at 95% confidence level. The anatomical structure of samples was also observed by scanning electron microscope (SEM) and some damage of the cell wall was determined due to heat treatment. The findings of this study demonstrated that heat treatment resulted in adverse effect on hardness characteristics of the samples. It appears that strength losses can be limited through alternative modified heat treatment techniques. On the other hand, surface quality of the samples from all species was enhanced as a result of heat treatment. Therefore such heat treatment would be considered to improve surface quality of the sample for furniture applications where smooth surfaces are ideal adding potential value on wood material to be used more effectively in furniture manufacturing.  相似文献   

18.
This study was to investigate anodic electrode IZTO films deposited by pulsed DC magnetron sputter at room temperature with various oxygen partial pressures onto glass substrate and to analyze the structural, electrical, and optical properties, as well as the relationship between the chemical binding state of the surface and the characteristics of IZTO films. In addition, the prepared IZTO films were used to fabricate the organic light emitting diodes (OLEDs) as an anode layer to study the device performances. The IZTO film deposited at optimal oxygen partial pressure of 2.0% in sputtering process showed the best properties, such as a low electrical resistivity and high optical transmittance of <5.1 × 10?4 Ω cm and >80% in the visible wavelength of 400–800 nm, respectively. The OLED characteristics with the optimum condition showed good brightness and the lowest turn-on voltage of >10,000 cd/m2 and 4.67 V. These results indicate that IZTO films can be a promising candidate as an alternative TCO electrode material for flexible and OLED devices.  相似文献   

19.
The alloy of 75% Cu–25% Sn was utilised and hot-pressed for 4 min at 421, 520 and 600 °C to obtain a self-sharpening bond for diamond honing stones at low sintering temperature. Densification and mechanical tests were performed, and structures were investigated by X-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy. Results showed that the porous structures changed into microporous structures when the hot pressing temperature was increased from 421 °C to 600 °C. The mechanical properties improved from HRB 79.1 to HRB 105.1 in hardness and from 104.2 MPa to 201.4 MPa in transverse rupture strength. After hot pressing at 600 °C, the microstructure consisted of α(Cu) + δ eutectoid and micropores, which meets the requirements of bonds for honing stones.  相似文献   

20.
The pyrolysis and combustion characteristics of urea-formaldehyde resin (UFR) residue were investigated by using thermogravimetric analysis, coupled with Fourier transform infrared spectroscopy (TG-FTIR). It is indicated that the pyrolysis process can be subdivided into three stages: drying the sample, fast thermal decomposition and further cracking process. The total weight loss of 90 wt.% at 950 °C is found in pyrolysis, while 74 wt.% of the original mass lost in the second stage is between 195 °C and 430 °C. The emissions of carbon dioxide, isocyanic acid, ammonia, hydrocyanic acid and carbon monoxide are identified in UFR residue pyrolysis, moreover, isocyanic acid emitted at low temperature is found as the most important nitrogen-containing gaseous product in UFR residue pyrolysis, and there is a large amount of hydrocyanic acid emitted at high temperature. The similar TG and emission characteristics as the first two stages during pyrolysis are found in UFR residue combustion at low temperature. The combustion process almost finishes at 600 °C; moreover, carbon dioxide and water are identified as the main gaseous products at high temperature. It is indicated that the UFR residue should be pyrolyzed at low temperature to remove the initial nitrogen, and the gaseous products during pyrolysis should be burnt in high temperature furnace under oxygen-rich conditions for pollutant controlling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号