首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With use of the whole cell patch-clamp technique, effects of the potent muscarinic agonist oxotremorine methiodide (oxo-M) on voltage-activated Ca2+ channel currents were investigated in acutely dissociated adult rat intracardiac neurons. In all tested neurons oxo-M reversibly inhibited the peak Ba2+ current. Inhibition of the peak Ba2+ current by oxo-M was associated with slowing of activation kinetics and was concentration dependent. The concentration of oxo-M necessary to produce a half-maximal inhibition of current and the maximal inhibition were 40.8 nM and 75.9%, respectively. Inhibitory effect of oxo-M was completely abolished by atropine. Among different muscarinic receptor antagonists, methoctramine (100 and 300 nM) significantly antagonized the current inhibition by oxo-M, with a negative logarithm of dissociation constant of 8.3 in adult rat intracardiac neurons. Internal dialysis of neurons with guanosine 5'-(thio)triphosphate (GTPgammaS, 0.5 mM) could mimic the muscarinic inhibition of the peak Ba2+ current and significantly occlude inhibitory effects of oxo-M. In addition, the internal dialysis of guanosine-5'-O-(2-thiodiphosphate) (GDPbetaS, 2 mM) also significantly reduced the muscarinic inhibition of the peak Ba2+ current by oxo-M. Inhibitory effects of oxo-M were significantly abolished by pertussis toxin (PTX, 200 and 400 ng/ml) but not by cholera toxin (400 ng/ml). Furthermore, the bath application of N-ethylmaleimide (50 microM) significantly reduced the inhibition of the peak Ba2+ current by oxo-M. The oxo-M shifted the activation curve derived from measurments of tail currents toward more positive potentials. A strong conditioning prepulse to +100 mV significantly relieved the muscarinic inhibition of peak Ba2+ currents by oxo-M and the GTPgammaS-induced current inhibition. In a series of experiments, changes in intracellular concentration of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid and protein kinase activities failed to mimic or occlude the current inhibition by oxo-M. The dihydropyridine antagonist nifedipine (10 microM) was not able to occlude any of the inhibitory effects of oxo-M, and oxo-M (3 microM) failed to reduce the slow tail currents induced by the L-type agonist methyl 2,5-dimethyl-4-[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylate (FPL 64176; 2 microM). However, omega-conotoxin (omega-CgTX) GVIA (1 microM) significantly occluded the muscarinic inhibition of the Ba2+ currents. In the presence of omega-CgTX GVIA (1 microM) and nifedipine (10 microM), oxo-M could further inhibit approximately 20% of the total Ca2+ current. After complete removal of N-, Q-, and L-type currents with use of omega-CgTX GVIA, omega-agatoxin IVA, and nifedipine, 70% of the R-type current (approximately 6-7% of the total current) was inhibited by oxo-M (3 microM). In conclusion, the M2 muscarinic receptor activation selectively inhibits N-, Q-, and R-type Ca2+ channel currents, sparing L-type Ca2+ channel currents mainly via a PTX- and voltage-sensitive pathway in adult rat intracardiac neurons.  相似文献   

2.
We have shown previously that the Ca2+ channel beta3 subunit is capable of modulating tonic G-protein inhibition of alpha1A and alpha1B Ca2+ channels expressed in oocytes. Here we determine the modulatory effect of the Ca2+ channel beta3 subunit on M2 muscarinic receptor-activated G-protein inhibition and whether the beta3 subunit modulates the G-protein sensitivity of alpha1A and alpha1B currents equivalently. To compare the relative inhibition by muscarinic activation, we have used successive ACh applications to remove the large tonic inhibition of these channels. We show that the resulting rebound potentiation results entirely from the loss of tonic G-protein inhibition; although the currents are temporarily relieved of tonic inhibition, they are still capable of undergoing inhibition through the muscarinic pathway. Using this rebound protocol, we demonstrate that the inhibition of peak current amplitude produced by M2 receptor activation is similar for alpha1A and alpha1B calcium currents. However, the contribution of the voltage-dependent component of inhibition, characterized by reduced inhibition at very depolarized voltage steps and the relief of inhibition by depolarizing prepulses, was slightly greater for the alpha1B current than for the alpha1A current. After co-expression of the beta3 subunit, the sensitivity to M2 receptor-induced G-protein inhibition was reduced for both alpha1A and alpha1B currents; however, the reduction was significantly greater for alpha1A currents. Additionally, the difference in the voltage dependence of inhibition of alpha1A and alpha1B currents was heightened after co-expression of the Ca2+ channel beta3 subunit. Such differential modulation of sensitivity to G-protein modulation may be important for fine tuning release in neurons that contain both of these Ca2+ channels.  相似文献   

3.
1. A whole-cell voltage clamp technique was used to examine the effects of purinoceptor and muscarinic receptor agonists on voltage-sensitive Ca2+ channels in guinea-pig isolated urinary bladder cells. 2. When the cell membrane was clamped at the holding potential, rapid application of ATP elicited a large inward current in normal solution containing 2.5 mM Ca2+, and reduced the subsequent Ca2+ channel current evoked by a depolarizing pulse (0 mV). Carbachol (CCh) elicited little membrane current, but similarly reduced the Ca2+ current. 3. When purinoceptor agonists were rapidly applied during conditioning depolarizations at +80 mV, an outward current was elicited, and the Ca2+ channel current evoked by the subsequent test potential of 0 mV was not affected. Application of CCh at +80 mV also elicited an outward current, but it reduced the subsequently evoked Ca2+ current. 4. The inhibitory effect of muscarinic agonists on the Ca2+ channel current was attenuated by caffeine (10 mM). 5. In Ca(2+)-free, low-Mg2+ solution, a Na+ current flowing through voltage-dependent Ca2+ channels was evoked by depolarization. This current was not reduced by bath application of purinoceptor agonists (ATP and alpha,beta-methylene ATP). 6. These results suggest that the main effect of purinoceptor stimulation is opening of non-selective cation channels, and that muscarinic stimulation triggers Ca2+ release from intracellular stores. Voltage-sensitive Ca2+ channels are inactivated through an increase in intracellular Ca2+ induced by either activation of purinoceptor or muscarinic receptors.  相似文献   

4.
The effect of mu-type opioid receptor agonist, D-Ala2,N-MePhe4,Gly5-ol-enkephalin (DAMGO), on high-voltage-activated (HVA) Ca2+ channels in the dissociated rat periaqueductal gray (PAG) neurons was investigated by the use of nystatin-perforated patch recording mode under voltage-clamp condition. Among 188 PAG neurons tested, the HVA Ca2+ channels of 38 neurons (32%) were inhibited by DAMGO (DAMGO-sensitive cells), and the other 80 neurons (68%) were not affected by DAMGO (DAMGO-insensitive cells). The N-, P-, L-, Q-, and R-type Ca2+ channel components in DAMGO-insensitive cells shared 26.9, 37.1, 22.3, 7.9, and 5.8%, respectively, of the total Ca2+ channel current. The channel components of DAMGO-sensitive cells were 45.6, 25.7, 21.7, 4.6, and 2.4%, respectively. The HVA Ca2+ current of DAMGO-sensitive neurons was inhibited by DAMGO in a concentration-, time-, and voltage-dependent manner. Application of omega-conotoxin-GVIA occluded the inhibitory effect of DAMGO approximately 70%. So, HVA Ca2+ channels inhibited by DAMGO were mainly the N-type Ca2+ channels. The inhibitory effect of DAMGO on HVA Ca2+ channels was prevented almost completely by the pretreatment of pertussis toxin (PTX) for 8-10 h, suggesting that DAMGO modulation on N-type Ca2+ channels in rat PAG neurons is mediated by PTX-sensitive G proteins. These results indicate that mu-type opioid receptor modulates N-type HVA Ca2+ channels via PTX-sensitive G proteins in PAG neurons of rats.  相似文献   

5.
Here we report novel effects of regulators of G protein signaling (RGS) on G protein-regulated ion channels. RGS3 and RGS4 induced a substantial increase in currents through the Gbeta gamma-regulated inwardly rectifying K+ channels, IK(ACh), in the absence of receptor activation. Concomitantly, the amount of current that could be activated by agonist was reduced. Pretreatment with pertussis toxin or a muscarinic receptor antagonist abolished agonist-induced currents but did not modify RGS effects. Cotransfection of cells with a Gbetagamma-binding protein significantly reduced the RGS4-induced basal IK(ACh) currents. The RGS proteins also modified the properties of another Gbeta gamma effector, the N-type Ca2+ channels. These observations strongly suggest that RGS proteins increase the availability of Gbeta gamma in addition to their previously described GTPase-activating function.  相似文献   

6.
Angiotensin II (AngII) is coupled to several important intracellular signaling pathways, and increases intracellular Ca2+. In vascular smooth muscle (VSM) cells, AngII is known to activate enzymes such as tyrosine protein kinase (Tyr-PK), phospholipase C (PLC), protein kinase C (PKC), and phophatidylinositol-3-kinase (PI-3-K). A non-receptor Tyr-PK, pp60(c-src), and PKC have been reported to stimulate the Ca2+ channels in VSM cells. However, less is known about AngII action on the voltage-gated Ca2+ channels. The Ca2+-channel currents of a cultured rat aortic smooth muscle cell line, A7r5, were recorded using whole-cell voltage clamp. Application of 50 nM AngII significantly increased the amplitude of Ba2+ currents through the voltage-gated Ca2+ channels (IBa) by 34. 5+/-9.1% (n=10) within 1 min. In the presence of lavendustin-A (5 microM), a selective inhibitor of Tyr-PK, AngII failed to stimulate IBa (n=5). AngII stimulation of IBa was also prevented by (5 microM) LY-294002, an inhibitor of PI-3-K (n=5). In contrast, H-7 (30 microM), an inhibitor of PKC, did not prevent the effect of AngII on IBa (n=6). These results suggest that AngII may stimulate the Ca2+ channels of VSM cells through Tyr-PK and PI-3-K under conditions that probably exclude participation of PK-C.  相似文献   

7.
Single cell microfluorimetry was used to study intracellular calcium ion signals ([Ca(2+)](i)) evoked by acetylcholine (ACh), glutamate receptor agonists and by KCI-induced membrane depolarization, during neuronal differentiation of the human embryonal carcinoma (EC) cell line, NTERA2. In undifferentiated NTERA2 EC cells, [Ca(2+)](i) was elevated in response to ACh, but not to the glutamate receptor agonists NMDA, kainate or AMPA. The ACh-induced rise in [Ca(2+)](i) was dependent upon both Ca(2+) influx and Ca(2+) mobilization from cytoplasmic calcium stores. Three other human EC cell lines responded similarly to ACh but not to glutamate or KCI-induced depolarization. In neurons derived from NTERA2 cells by retinoic acid induction, [Ca(2+)](i) signals were evoked by ACh, NMDA, kainate and by an elevation of the extracellular KCI concentration. As in undifferentiated EC cells, the ACh-mediated increases in [Ca(2+)](i) were governed by both Ca(2+) influx and Ca(2+) mobilization. In contrast, the effects of NMDA, kainate and KCI did not involve intracellular Ca(2+) mobilization. The appearance of glutamate and KCI responsiveness was not detected in non-neuronal differentiated derivatives of NTERA2 cells. Using a number of pharmacologically defined muscarinic receptor antagonists we found that NTERA2 EC cells express M(1), M(3), M(4) and possibly M(5) receptor subtypes linked to changes in [Ca(2+)](i), whilst only M(3) and M(5) are present in NTERA2-derived neurons. The results were supported by PCR analysis of the muscarinic mRNA species expressed in the cells. The data demonstrate that differentiation of NTERA2 EC cells into neurons involves the induction of functional glutamate receptors coupled to rises in [Ca(2+)](i), and changes in the expression of muscarinic ACh receptor subtypes.  相似文献   

8.
1. The action of mibefradil was studied on wild type class A calcium (Ca2+) channels and various class A/L-type channel chimaeras expressed in Xenopus oocytes. The mechanism of Ca2+ channel block by mibefradil was evaluated with two microelectrode voltage clamp. 2. Resting-state dependent block (or initial block) of barium currents (IBa) through class A Ca2+ channels was concentration dependent with an IC50 value of 208+/-23 microM. 3. Mibefradil (50 microM) did not significantly affect the midpoint voltage of the steady-state inactivation curve suggesting that inactivation does not promote Ca2+ channel block. Chimaeric class A/L-type Ca2+ channels inactivating with faster or slower kinetics than wild type class A channels were equally well inhibited by mibefradil as wild type class A channels. 4. Frequent Ca2+ channel activation facilitated IBa inhibition by mibefradil (use-dependent block). Recovery from use-dependent block was voltage-dependent, being slower at depolarized membrane potentials (tau = 75+/-15 s at -70 mV, (n=6) vs tau = 20+/-2 s at -100 mV, (n=6), P<0.05). 5. We suggest that use-dependent block of class A Ca2+ channels by mibefradil occurs because of slow recovery from open channel block (SROB) and not because of drug binding to inactivated channels. 6. Voltage-dependent slow recovery from open state-dependent block provides a molecular basis for understanding the cardiovascular profile of mibefradil such as selectivity for vasculature and relative lack of negative inotropic effects.  相似文献   

9.
Gonadotropin-releasing hormone (GnRH) controls all aspects of reproductive function. GnRH is secreted by hypothalamic neurons and exerts its effects on the endocrine system through pituitary gonadotropes, while its effects on sexual receptivity are mediated by the central nervous system. The electrophysiological responses of central neurons to GnRH have shown both excitatory and inhibitory responses, but little is known about the mechanisms by which GnRH can change neuronal excitability. The present study addresses the mechanisms whereby stimulation of the human GnRH receptor changes neuronal excitability by using a combination of electrophysiological and heterologous expression techniques. Microinjection of in vitro transcribed cRNA coding for the human GnRH receptor into enzymatically dissociated adult rat superior cervical ganglion neurons resulted in GnRH receptor expression. Activation of the GnRH receptor inhibited both M-type K+ and N-type Ca2+ channels. Inhibition of M-type K+ channels was insensitive to pertussis toxin pretreatment and blocked by intracellular GDPbetaS. Inhibition of Ca2+ channels was slow in onset, voltage independent and insensitive to pertussis toxin. Wash-out of GnRH resulted in an unusual transient reversal of tonic G-protein-mediated Ca2+ channel inhibition. Block of the N-type Ca2+ channel with omega-conotoxin GVIA decreased Ca2+ current inhibition from 43 to 15%, indicating that the N-type Ca2+ channel is an effector target. Ca2+ channel inhibition was completely abolished by including a Ca2+ chelator in the patch pipette. Cell-attached macropatch experiments indicated that Ca2+ channel inhibition is mediated by a diffusible second messenger. These results demonstrate that the human GnRH receptor can inhibit M-type K+ and N-type Ca2+ channels when heterologously expressed in adult rat neurons. Modulation of M-type K+ and N-type Ca2+ channels in central neurons which contain GnRH receptors is likely to contribute to the changes in neuronal excitability elicited by GnRH.  相似文献   

10.
The contribution of L-, N-, P- and Q-type Ca2+ channels to excitatory and inhibitory synaptic transmission and to whole-cell Ba2+ currents through Ca2+ channels (Ba2+ currents) was investigated in rat hypothalamic neurons grown in dissociated cell culture. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) were evoked by stimulating individual neurons under whole-cell patch-clamp conditions. The different types of high-voltage-activated (HVA) Ca2+ channels were identified using nifedipine, omega-Conus geographus toxin VIA (omega-CTx GVIA), omega-Agelenopsis aperta toxin IVA (omega-Aga IVA), and omega-Conus magus toxin VIIC (omega-CTx MVIIC). N-, but not P- or Q-type Ca2+ channels contributed to excitatory as well as inhibitory synaptic transmission together with Ca2+ channels resistant to the aforementioned Ca2+ channel blockers (resistant Ca2+ channels). Reduction of postsynaptic current (PSC) amplitudes by N-type Ca2+ channel blockers was significantly stronger for IPSCs than for EPSCs. In most neurons whole-cell Ba2+ currents were carried by L-type Ca2+ channels and by at least two other Ca2+ channel types, one of which is probably of the Q-type and the others are resistant Ca2+ channels. These results indicate a different contribution of the various Ca2+ channel types to excitatory and inhibitory synaptic transmission and to whole-cell currents in these neurons and suggest different functional roles for the distinct Ca2+ channel types.  相似文献   

11.
Release of acetylcholine (ACh) from the presynaptic terminals in skate electric organ was tested for its sensitivity to calcium channel antagonists. A pharmacological profile was established by measuring inhibition of K(+)-stimulated release of [3H]ACh from prelabelled tissue slices. Peptide antagonists of N-type (omega-conotoxins GVIA and MVIIA) and P-type (omega-agatoxin-IVA) channels had no effect, whereas both omega-conotoxins MVIIC and SVIB produced concentration-dependent inhibition and could completely block ACh release. omega-Conotoxin GVIA and omega-agatoxin IVA did not attenuate the block by omega-conotoxin MVIIC. The inorganic ions, Cd2+ and Ni2+, also produced a full inhibition of release (Cd2+ > > Ni2+) and Gd3+ a partial one. Drugs targeting L-type channels (diltiazem, nifedipine and verapamil) at low microM concentrations and a synthetic analogue of the polyamine toxin from funnel web spider venom (sFTX) at 1 mM were all non-inhibitory. Inhibition by omega-conotoxins MVIIC (IC50 25 nM) and SVIB (IC50 500 nM) was reversible and modulated by external concentrations of Ca2+. Inhibitory potency was increased by lowering and decreased by elevating external Ca2+. This "antagonistic" effect of Ca2+ was also seen with Cd2+ inhibition. The inhibitory potency of omega-conotoxin MVIIC was unaffected by predepolarisation. End plate potentials generated by release of endogenous ACh in electrically-stimulated slices were also reversibly blocked by Cd2+ and omega-conotoxins MVIIC and SVIB but were unaffected by omega-conotoxin GVIA and omega-agatoxin IVA. It is concluded that ACh release in skate electric organ depends on presynaptic calcium channels which have different pharmacological properties from established sub-types.  相似文献   

12.
1. We studied the effects of phorbol-12-myristate, 13-acetate (PMA) on G-protein-mediated inhibition of Ca2+ channels by several neurotransmitters in rat superior cervical ganglion (SCG) sympathetic neurons, with the use of the whole cell patch clamp. PMA attenuated membrane-delimited inhibition of calcium currents (ICa) by norepinephrine (NE) and somatostatin by more than half, but did not attenuate inhibition by M1 muscarinic receptors, which use a diffusible cytoplasmic messenger. Inhibition of ICa by NE through pertussis-toxin-sensitive and -insensitive G proteins was equally attenuated by PMA. PMA enhanced ICa in about half the neurons (enhancement of 10 +/- 1%, mean +/- SE) and strongly reduced the holding current in 44 of 61 cells. 2. The M-type K+ current (IM) was not suppressed by PMA, and PMA did not attenuate inhibition of IM by muscarinic agonists, which is also via a diffusible cytoplasmic messenger. 3. Attenuation of NE and somatostatin inhibition by PMA was blocked by 1 microM staurosporine, a broad-spectrum protein kinase inhibitor. Tests with three inhibitors selective for distinct isoforms of protein kinase C (PKC) gave mixed results. PMA's actions were unaffected by 1 microM calphostin C, blocked by 500 nM bisindolylmaleimide, and unaffected by the pseudosubstrate inhibitor PKC19-36. 4. Thus we find that two membrane-delimited signaling pathways that inhibit ion channels in rat SCG neurons are strongly attenuated by PMA, but signaling pathway(s) that use a diffusible cytoplasmic messenger are not. We speculate that a nonstandard PKC isoform, perhaps PKC mu, mediates PMA actions.  相似文献   

13.
To elucidate the mechanisms of estrogens-induced relaxation effects on vascular smooth muscle cells, the effects of estrogens and the related hormones were examined in cultured rat thoracic aortic smooth muscle cell lines (A7r5), using the whole-cell voltage clamp technique. The patch pipette was filled with 140 mM CsCl- or KCl-containing internal solution. With CsCl-internal solution, 17beta-estradiol and synthetic estrogens, ethynylestradiol and diethylstilbestrol (0.1-30 mu M) inhibited the Ba2+ inward current (IBa) through the voltage-dependent L-type Ca2+ channel in a concentration-dependent and reversible manner. The potency of the inhibitory effects on IBa was 17beta-estradiol < ethynylestradiol < diethylstilbestrol. 17beta-Estradiol (10 mu M) appeared to reduce the maximal conductance of IBa with only a slight shift of voltage-dependency of inactivation and to affect IBa in a use-independent fashion. On the other hand, testosterone and progesterone (30 mu M) failed to affect IBa. At a holding potential of -40 mV, both vasopressin and endothelin-1 (100 nM) activated a long-lasting inward current. After endothelin-1 (100 nM) activated the current, the additional application of vasopressin (100 nM) could not induce it furthermore, suggesting that each agonist activates the same population of the channels. The reversal potential of the current was about 0 mV and was not significantly altered by replacement of [Cl-]i or [Cl-]0 and the inward current was also observed even when extracellular cations are Ca2+, proposing that it was a Ca2+-permeable non-selective cation channel (IN.S.). La3+ or Cd2+ (1 nM) completely abolished IN.S., however, nifedipine (10 mu M) failed to inhibit it at all. Diethylstilbestrol (1-30 mu M) suppressed the IN.S. evoked by both endothelin-1 and vasopressin in a concentration-dependent manner, while 17beta-estradiol, ethynylestradiol, progesterone and testosterone (30 mu M) failed to inhibit it significantly. In addition, at a holding potential of +0 mV, 17beta-estradiol by itself did not affect the holding currents, and did not inhibit K+ currents evoked by endothelin-1 or vasopressin, possibly due to the Ca2+ release from the storage sites. These results suggest that 17beta-estradiol may play a role in regulating vascular tone, selectively by inhibiting the voltage-dependent L-type Ca2+ current in vascular smooth muscle cells.  相似文献   

14.
Metabotropic glutamate receptor (mGluR)-mediated inhibition of high-voltage-activated Ca2+ currents was investigated in pyramidal neurons acutely isolated from rat dorsal frontoparietal neocortex. Whole cell recordings were made at 30-32 degrees C, with Ca2+ as the charge carrier. Selective agonists were used to classify the subgroup of mGluRs mediating the response. Ca2+ currents were inhibited by (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S, 3R-ACPD) and by the group I agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) but not by the group II agonist (2S,2'R,3'R)-2-(2', 3'-dicarboxycyclopropyl)glycine (DCG-IV) or the group III agonist (+)-2-amino-4-phosphonobutryic acid (-AP4). (2S,1'S, 2'S)-2-(carboxycyclopropyl)glycine (-CCG-I) was effective at 10 and 100 microM but not at 1 microM, consistent with involvement of group I mGluRs. Variable results were obtained with the putative mGluR5-selective agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) and the putative mGluR1-selective antagonist (S)-4-carboxyphenylglycine [(S)-4CPG], indicating that the group I mGluR subtypes may vary between cells or that these compounds were activating other receptors. The actions of (+)-alpha-methyl-4-carboxyphenylglycine [(+)-MCPG] were consistent with it being a low-potency antagonist. Several features of the Ca2+ current inhibition evoked by DHPG distinguished it from the rapid modulation typical of a direct action of G proteins on Ca2+ channels; the inhibition was slow to reach maximum (tens of seconds), current activation was not slowed or shifted in the positive voltage direction, and the inhibition was not relieved by positive prepulses. Nimodipine and omega-conotoxin GVIA blocked fractions of the current and also reduced the magnitude of the responses to DHPG, indicating that both L- and N-type Ca2+ channels were regulated. These results further differentiate the slow modulatory pathway observed in neocortical neurons when Ca2+ is used as the charge carrier from the rapid voltage-dependent mechanism reported to inhibit Ba2+ currents under Ca2+-free conditions.  相似文献   

15.
INTRODUCTION: The aims of this study were to investigate: (1) the effect of supplementing the culture medium on preservation of L-type calcium channel current (1Ca,L) in adult rabbit ventricular myocytes cultured for 4 days; and (2) preservation of the ICa,L response in cultured myocytes to the beta-adrenergic agonist isoprenaline. METHODS AND RESULTS: Adult rabbit myocytes were cultured on laminin-pretreated glass coverslips. The basic, serum-free culture medium was supplemented with 2 mM L-carnitine, 5 mM creatine, and 5 mM taurine. Myocytes were whole cell patch-clamped, and the L-type Ca channel current was recorded selectively as Ba flux (IBa,L) via the channels. IBa,L density (i.e., IBa,L amplitude normalized to membrane capacitance) in myocytes maintained in supplemented medium did not change significantly during culture (P > 0.1). By comparison, IBa,L density in myocytes cultured in nonsupplemented medium declined by 36% after 24 hours in culture (day 1) and then recovered by the fourth day (day 4). There was no significant difference in the response to isoprenaline of acutely isolated myocytes and 4-day cultured myocytes. Isoprenaline 100 nM increased peak IBa,L by 149% +/- 32% (mean +/- SEM) in acutely isolated myocytes (n = 4 cells), and by 224% +/- 60% (n = 6 cells) and 159% +/- 24% (n = 8 cells) in day 1 and 4 cultured myocytes, respectively. CONCLUSIONS: Supplemented medium improved IBa,L density in cultured myocytes. beta-Adrenergic receptors and intracellular messenger pathways appear to remain intact in adult rabbit myocytes cultured for up to 4 days.  相似文献   

16.
Many neuromodulators inhibit N-type Ca2+ currents via G protein-coupled pathways in acutely isolated superior cervical ganglion (SCG) neurons. Less is known about which neuromodulators affect release of norepinephrine (NE) at varicosities and terminals of these neurons. To address this question, we used carbon fiber amperometry to measure catecholamine secretion evoked by electrical stimulation at presumed sites of high terminal density in cultures of SCG neurons. The pharmacological properties of action potential-evoked NE release paralleled those of N-type Ca2+ channels: Release was completely blocked by Cd2+ or omega-conotoxin GVIA, reduced 50% by 10 microM NE or 62% by 2 microM UK-14,304, an alpha2-adrenergic agonist, and reduced 63% by 10 microM oxotremorine M (Oxo-M), a muscarinic agonist. Consistent with action at M2 or M4 receptor subtypes, Oxo-M could be antagonized by 10 microM muscarinic antagonists methoctramine and tropicamide but not by pirenzepine. After overnight incubation with pertussis toxin, inhibition by UK-14,304 and Oxo-M was much reduced. Other neuromodulators known to inhibit Ca2+ channels in these cells, including adenosine, prostaglandin E2, somatostatin, and secretin, also depressed secretion by 34-44%. In cultures treated with omega-conotoxin GVIA, secretion dependent on L-type Ca2+ channels was evoked with long exposure to high K+ Ringer's solution. This secretion was not sensitive to UK-14,304 or Oxo-M. Evidently, many neuromodulators act on the secretory terminals of SCG neurons, and the depression of NE release at terminals closely parallels the membrane-delimited inhibition of N-type Ca2+ currents in the soma.  相似文献   

17.
Agonist activation of cholinergic receptors expressed in perifused hypothalamic and immortalized GnRH-producing (GT1-7) cells induced prominent peaks in GnRH release, each followed by a rapid decrease, a transient plateau, and a decline to below basal levels. The complex profile of GnRH release suggested that acetylcholine (ACh) acts through different cholinergic receptor subtypes to exert stimulatory and inhibitory effects on GnRH release. Whereas activation of nicotinic receptors caused a transient increase in GnRH release, activation of muscarinic receptors inhibited basal GnRH release. Nanomolar concentrations of ACh caused dose-dependent inhibition of cAMP production that was prevented by pertussis toxin (PTX), consistent with the activation of a plasma-membrane Gi protein. Micromolar concentrations of ACh also caused an increase in phosphoinositide hydrolysis that was inhibited by the M1 receptor antagonist, pirenzepine. In ACh-treated cells, immunoblot analysis revealed that membrane-associated G(alpha q/11) immunoreactivity was decreased after 5 min but was restored at later times. In contrast, immunoreactive G(alpha i3) was decreased for up to 120 min after ACh treatment. The agonist-induced changes in G protein alpha-subunits liberated during activation of muscarinic receptors were correlated with regulation of their respective transduction pathways. These results indicate that ACh modulates GnRH release from hypothalamic neurons through both M1 and M2 muscarinic receptors. These receptor subtypes are coupled to Gq and Gi proteins that respectively influence the activities of PLC and adenylyl cyclase/ion channels, with consequent effects on neurosecretion.  相似文献   

18.
The effects of various Ca2+ channel agonists and antagonists on tumor cell growth were investigated using U-373 MG human astrocytoma and SK-N-MC human neuroblastoma cell lines. Classical Ca2+ channel antagonists, verapamil, nifedipine, and diltiazem, and inorganic Ca2+ channel antagonists, Ni2+ and Co2+, inhibited growth of these tumor cells in a dose-dependent manner. Except Ni2+, these Ca2+ channel antagonists did not induce a significant cytotoxicity, suggesting that the growth-inhibitory effects of these drugs may be the result of the influence on the proliferative signaling mechanisms of these tumor cells. In contrast, Bay K-8644, a Ca2+ channel agonist, neither enhanced the growth of tumor cells nor increased intracellular Ca2+ concentration, indicating that voltage-sensitive Ca2+ channels may not be involved in tumor cell proliferation. Moreover, growth-inhibitory concentrations of Ca2+ channel antagonists significantly blocked agonist (carbachol or serum)-induced intracellular Ca2+ mobilization, which was monitored using Fura-2 fluorescence technique. These results suggest that the inhibition of the growth of human brain tumor cells induced by Ca2+ channel antagonists may not be the result of interaction with Ca2+ channels, but may be the result of the interference with agonist-induced intracellular Ca2+ mobilization, which is an important proliferative signaling mechanism.  相似文献   

19.
We have used cultures of purified embryonic rat spinal cord motor neurons to study the neurotoxic effects of prolonged ionotropic glutamate receptor activation. NMDA and non-NMDA glutamate receptor agonists kill a maximum of 40% of the motor neurons in a concentration- and time-dependent manner, which can be blocked by receptor subtype-specific antagonists. Subunit-specific antibodies stain all of the motor neurons with approximately the same intensity and for the same repertoire of subunits, suggesting that the survival of the nonvulnerable population is unlikely to be due to the lack of glutamate receptor expression. Extracellular Ca2+ is required for excitotoxicity, and the route of entry initiated by activation of non-NMDA, but not NMDA, receptors is L-type Ca2+ channels. Ca2+ imaging of motor neurons after application of specific glutamate receptor agonists reveals a sustained rise in intracellular Ca2+ that is present to a similar degree in most motor neurons, and can be blocked by appropriate receptor/channel antagonists. Although the lethal effects of glutamate receptor agonists are seen in only a subset of cultured motor neurons, the basis of this selectivity is unlikely to be simply the glutamate receptor phenotype or the level/pattern of rise in agonist-evoked intracellular Ca2+.  相似文献   

20.
The secretion of alphaMSH from the intermediate lobe of the frog pituitary is regulated by multiple factors, including classical neurotransmitters and neuropeptides. In particular, acetylcholine (ACh), acting via muscarinic receptors, stimulates alphaMSH release from frog neurointermediate lobes (NILs) in vitro. The aim of the present study was to characterize the type of receptor and the transduction pathways involved in the mechanism of action of ACh on frog melanotrope cells. The nonselective muscarinic receptor agonists muscarine and carbachol both stimulated alphaMSH release from perifused frog NILs, whereas the M1-selective muscarinic agonist McN-A-343 was virtually devoid of effect. Both the M1>M3 antagonist pirenzepine and the M3>M1 antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide inhibited muscarine-induced alphaMSH release. Administration of a brief pulse of muscarine in the vicinity of cultured melanotrope cells provoked a 4-fold increase in the cytosolic calcium concentration ([Ca2+]i). Suppression of Ca2+ in the culture medium or addition of 3 mM Ni2+ abrogated the stimulatory effect of muscarine on [Ca2+]i and alphaMSH release. In contrast, omega-conotoxin GVIA and nifedipine did not significantly reduce the stimulatory effect of muscarine on [Ca2+]i and alphaMSH secretion. Exposure of NILs to muscarine provoked an increase in inositol phosphate formation, and this effect was dependent on extracellular Ca2+. The inhibitor of polyphosphoinositide turnover neomycin significantly attenuated the muscarine-evoked alphaMSH release. Similarly, pretreatment of frog NILs with phorbol ester markedly reduced the secretory response to muscarine. In contrast, the stimulatory effect of muscarine on alphaMSH release was not affected by the phospholipase A2 inhibitor dimethyl eicosadienoic acid or by the tyrosine kinase inhibitors lavendustin A, genistein, and tyrphostin 25. Muscarine at a high concentration (10(-4) M) only produced a 40% increase in cAMP formation. Preincubation of frog NILs with pertussis toxin did not significantly affect the muscarine-induced stimulation of alphaMSH release. These results indicate that frog melanotrope cells express a muscarinic receptor subtype pharmacologically related to the mammalian M3 receptor. Activation of this receptor causes calcium influx through Ni2+-sensitive Ca2+ channels and subsequent activation of the phopholipase C/protein kinase C transduction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号