首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 203 毫秒
1.
探索润滑油与理想气体混合介质下齿轮箱密封泄漏机理,分析转子旋转效应和热效应对迷宫密封泄漏特性的影响,研究旋转效应和热效应造成密封系统转子结构变形和流场变化导致密封性能变化的影响规律. 研究结果表明:旋转效应和热效应减小了迷宫密封间隙宽度,其中,热效应膨胀变形量高于旋转效应离心变形一个量级;转子转速存在一个阈值(4 000 r/min),当转速超过阈值时,迷宫密封泄漏量明显降低,当转子转速为10 000 r/min时,相对无旋转工况,泄漏量下降了18.5%;润滑油温度升高,黏度降低,密封结构的泄漏量呈近线性增大,当温度为140 °C时,相比温度为40 °C工况,泄漏量上升了58.6%;旋转效应和热效应造成流场变化是影响密封系统泄漏特性的主要因素,结构变形是次要因素.  相似文献   

2.
采用GAMB IT软件建立迷宫通道的二维非结构化网格模型,利用FLUENT模拟迷宫密封的内部流动,分析空腔深度、间隙宽度、节流片的倾斜角对迷宫密封性能的影响,得到较为优化的迷宫密封结构。结果表明:间隙宽度增加,迷宫密封泄漏量逐渐增大,空腔深度和节流片倾斜角增大,泄漏量减小;间隙宽度和空腔深度对密封性能影响较大,而节流片倾斜角的影响较小.  相似文献   

3.
针对迷宫密封-转子系统的特点,建立密封-转子系统动力学模型,分析转速、入口预旋比、密封间隙、压差等重要密封参数对密封动力学特性系数的影响.对三维模型的流体动力学(CFD)进行分析,总结出密封结构和压差对泄漏量的变化规律,并通过与实验的对比分析验证了本方法的正确性.研究结果表明:减小密封入口预旋速度,适当增大密封间隙,可以减小引起不稳定的交叉刚度系数,提高稳定性.齿宽存在一个临界值(1.04 mm),高于这个临界值时,随着齿宽变大泄漏量变大;低于这个临界值时,随着齿宽变大泄漏量变小.在相同转速下,随着密封间隙的增大泄漏量增大,压差增大泄漏量增大,腔深增大泄漏量减小.  相似文献   

4.
为分析某型号汽轮机改进的刷式密封结构的密封性能,采用non?Darcian多孔介质模型的Reynolds?averaged Navier?Stokes方程数值求解方法,对泄漏流动特性及转子表面、刷束自由高度和保护高度的压力、速度、湍流动能分布规律进行数值研究,并与迷宫密封进行相应的比较。结果表明:相同的间隙和压比下,混合刷式密封流场分布要比迷宫密封复杂,泄漏量明显小于迷宫密封;相同的结构和参数下,泄漏量随着压比的上升而增加;转子表面的轴向压力和湍流动能从进口到出口呈现阶梯状递减趋势,保护高度的径向压力基本趋于常数值;刷束径向速度和湍流动能随着压比的上升而增加,刷束下半部分和后挡板保护高度对泄漏特性影响比较大。研究结果为汽轮机刷式密封的结构设计,改善性能,提供了理论依据。  相似文献   

5.
高速动压密封的气液两相性能对比分析和试验   总被引:1,自引:0,他引:1  
为明确气相介质和液相介质分别对高速流体动压密封性能的影响,进行两种相态的密封性能对比分析与试验研究.分别建立动压密封端面流体域的气相和液相数值分析模型,分析转速、压差、槽深、槽数、槽坝比等操作参数和端面结构参数对动压密封气相和液相的泄漏量、开启力等性能的影响.自主研制动压密封试验装置,进行变转速、变压差和密封端面磨损试验,得出了转速、压差等操作参数对密封气相泄漏率、液相泄漏率和端面磨损率的影响.数值模拟和试验研究结果表明:相同的转速和压力时,液相密封开启力和泄漏量都比气相密封更大;不同结构参数下,气相和液相密封开启力均有极大值,气相密封和液相密封开启力达到极大值的最优结构参数有所不同,液相密封的最优槽坝比、最优槽数较气相密封小,液相密封开启转速较气相密封低,说明液相动压密封比气相动压密封更容易开启;低速时密封端面磨损较严重,高速时密封端面几乎无磨损,动压密封更适合在高速工况下运行.  相似文献   

6.
为了研究液压阀流体域内压力、速度及密封间隙对运动副密封性能的影响,本文建立了液压阀某运动副模型,基于有限元方法对于高性能旋转动密封运动副进行了数值仿真与计算。结果表明:压力值从油膜的微尺度间隙处到运动副中间处呈衰减变化,到运动副中间压力达到最小,压力变大时,泄漏量增加。受黏性摩擦力的影响,随缝隙值的增加,速度出现先变小后增大的趋势,随着缝隙值逐步增大,流经横截面的流体平均流速增大,泄漏量增大。阀芯与阀套间油膜的最优厚度取值与泄漏和摩擦所造成的总功率损失有关。  相似文献   

7.
在垫片高温试验装置上 ,进行了柔性石墨缠绕垫片密封性能试验研究 ,得到了垫片密封性能随温度变化的关系曲线及拟合计算公式 .研究结果表明 ,该垫片具有较好的密封性能 ,泄漏率与温度成指数关系 ,随温度的升高而增大 ,符合多孔介质模型的方程 .  相似文献   

8.
在“碳达峰、碳中和”背景下,二氧化碳(CO2)捕集利用与封存(carbon capture, utilization and storage,CCUS)技术作为减少CO2排放的最有效策略已成为世界关注的热点。针对应用于CCUS技术中的离心式压缩机,以螺旋槽干气密封为研究对象,含杂质CO2为润滑介质,基于EOS–CG(equation of state for combustion gases and combustion gas-like mixtures)模型获得干气密封运行工况范围内含杂质CO2混合物密度、焓值、声速及焦耳–汤姆逊系数等热力学参数;考虑实际气体效应、黏温压效应、阻塞流效应、离心惯性效应及润滑介质与密封端面间的对流换热,采用有限差分法耦合求解雷诺方程、能量方程及密封环热传导方程,获得含杂质CO2干气密封压力场、温度场、开启力、泄漏率等稳态性能参数。结果表明:当温度一定时,密度随压力的增大而增大,焓值、焦耳–汤姆逊系数随压力的增大而减小;当压力一定时,密度随温度的增大而减小,焓值随温度的增大而增大,在较低压力区域,声速随温度的增大而增大,焦耳–汤姆逊系数随温度的增大而减小;当密封进口压力为12 MPa、进口温度为380 K、转速为15 000 r/min时,含杂质CO2干气密封出口压力为1.9 MPa,气膜进出口温差约为23 K,密封环端面内外径温差约为10 K;以转速、进口压力、进口温度为变量时,气膜温度、密封环端面温度随转速、进口温度的增大而增大,随进口压力的增大而减小;开启力随转速、进口压力、进口温度的增大而增大;泄漏率随转速、进口温度的增大而减小,随进口压力的增大而增大。  相似文献   

9.
针对L型槽织构化机械端面密封,建立理论模型,利用基于计算流体动力学(computational fluid dynamics,CFD)的数值模拟方法研究L型槽表面织构在不同槽深、槽型长宽比、偏转角度及动环转速下的密封性能。结果表明:L型槽的动压效应能改变密封端面的压力分布;随偏转角度的增大,密封端面承载力和泄漏量呈波浪式变化规律;偏转角度为225°、长宽比为1的L型槽能改善高速条件下机械端面密封承载能力,并能维持端面泄漏的稳定。  相似文献   

10.
为考虑射流内部湍流扰动对雾化的影响,本文将喷嘴内部湍流扰动量用湍流长度和时间尺度来表示,并以权重的形式加入初次破碎模型中。对比分析了单液滴表面不稳定波和湍流扰动对液滴破碎的影响。计算结果表明:湍流扰动随液滴运动时间的增加对破碎的影响逐渐减小,不稳定波的影响比重逐渐增大;喷嘴内流速越大,湍流扰动量越强,影响的时间越久。对本文提出的破碎模型进行了验证,计算结果表明:湍流扰动会导致液滴的索特尔平均直径(SMD)减小4%左右;随入射压力升高,湍流扰动对贯穿距的影响逐渐增大;虽然二次破碎发生在距离喷嘴较远处,但初始湍流值的大小,还是能影响到二次破碎后液滴大小和速度。  相似文献   

11.
One of the important problems to be tackled in turbo machines is the leakage dynamics characteristics of labyrinth seals.In this paper we analyzed the effect of labyrinth seal structure and the change ...  相似文献   

12.
涡动转子与迷宫密封中的泄漏流体相互作用能产生诱发涡轮机械失稳的气流激振力。迷宫密封动特性系数能描述激振力的重要特性。传统的迷宫密封动特性分析方法基于整体流动理论,尽管求解迅速,但对工作在小间隙、高速、高压条件下的密封动特性预测精度不高,且不适用于求解复杂结构密封的动特性。为了提高迷宫密封动特性的预测精度,利用三维计算流体动力学方法模拟迷宫密封内部流动。这一方法适合于任意齿形和结构的迷宫密封,当仅计算泄漏量时采用轴对称模型,计算激振力采用三维偏心模型。计算结果与实验数据比较,表明计算流体动力学方法预测阶梯迷宫密封的泄漏量和动特性系数精度较高。  相似文献   

13.
The thermoelastohydrodynamic performance of an inclined-ellipse dimpled gas face seal is analyzed. The pressure distributions of the gas film and temperature fields of the seal rings and gas film are presented considering thermal and elastic distortions.Then, the influences of texturing parameters, including dimple inclination angle and dimple depth, on sealing performance are investigated under different operating parameters such as rotational speeds and seal pressures. The results show that face distortions lead to a decrease in the hydrodynamic effect at high rotational speed. The analysis shows that the opening force can decrease by more than 50% as the rotational speed increases from 0 to 35000 r min~(-1). The influence of face distortion on the seal performance, such as opening force and leakage characteristic, gradually increases with the rotational speed.  相似文献   

14.
焊接金属波纹管机械密封是轴类密封的重要类型之一,而密封端面振动特性是泄漏量和端面磨损的关键影响因素。由于目前针对焊接金属波纹管机械密封端面振动位移相关理论研究较少且没有具体分析各工作参数对端面振动的影响。首先,作者建立了端面密封环的几何模型和极坐标下端面所受表面压力以及分布力矩的数学模型;采用圆环理论和数值分析方法,推导出受谐波形式载荷条件下端面振动位移的求解公式。然后,利用MATLAB求解出密封端面在不同工况条件下轴向振动和径向振动位移特解。发现在相同的工况条件下径向振动位移均大于轴向振动位移。最后,设计了径向振动试验,利用电涡流传感器测量密封端面径向振动位移,分别探究了介质压力、工作转速、载荷系数和压缩量对径向振动位移的影响。结果表明:工作转速和压缩量对径向振动位移影响较大,介质压力和载荷系数对径向振动位移影响趋势相同。径向振动位移随着转速的增大而急剧增大;随着压缩量的增加先缓慢增大后迅速增大;随着介质压力的升高、载荷系数的增大,径向振动位移先减小后增大。对比理论计算和试验结果,验证了密封端面振动位移数学模型的正确性。优选出合理的工作参数范围为:介质压力为0.4~1.4 MPa,工作转速为1 500~2 500 r/min,载荷系数K为0.60~0.75,压缩量为4~6 mm。  相似文献   

15.
An accurate seal forces model is the foundation to analyze the rotor-seal systems. In this paper, the Navier-Stokes equation and energy equation are solved to simulate the interior flow field in the labyrinth seal gap. The leakage rate is compared with the experimental results in the literatures. The :4maximum error is 4% , which proves that the method of employing CFD to simulate the interior flow field of labyrinth seal gap is reliable. Based on this, the interior flow field and fluid exciting force of stage teeth labyrinth seal are studied. By coupling with the Muszynska model, the method of defining the experience loss parameters in Muszynska model is proposed. The results indicate that the experience parameters obtained by the proposed method can depict the nonlinear exciting force of labyrinth seal better.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号