首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用磁控共溅射方法制备非晶硅银(a-Si∶Ag)薄膜,并对其进行飞秒激光辐照;采用扫描电子显微镜、拉曼光谱仪、积分球、半导体性能测试仪等,对辐照前后薄膜的表面形貌、微观结构以及光电性能等进行表征。结果表明:当辐照能量为300 mJ/cm~2时,a-Si∶Ag薄膜表面无明显的刻蚀痕迹,薄膜中有纳米晶硅颗粒生成,薄膜中的Ag纳米晶长大;当辐照能量为600 mJ/cm~2时,薄膜表面出现明显的刻蚀痕迹,Ag纳米晶进一步长大,然而,产生的纳米晶硅颗粒的尺寸却没有变化;被飞秒激光辐照后,a-Si∶Ag薄膜比辐照前的电阻率更小,同时,薄膜对可见-近红外波段的入射光产生了反射减弱现象。研究结果对基于a-Si∶Ag薄膜的忆阻神经突触器件性能的改善具有积极意义。  相似文献   

2.
在室温环境下,实验采用Nd\:YAG光纤脉冲激光器辐照银(Ag)、铜(Cu)、铝(Al)三种光滑连续的金属薄膜,制备出了对应的三种金属纳米颗粒薄膜。通过调节激光扫描速率可以实现三种金属纳米颗粒薄膜的局域表面等离子体共振(LSPR)波长和强度的调谐。其中,Ag纳米颗粒薄膜在可见光波段的等离子体吸收峰的波长和强度均表现出较宽的调谐范围,Cu纳米颗粒薄膜在可见光波段的等离子体吸收峰的波长和强度均表现较小的调谐范围,Al纳米颗粒薄膜在紫外光波段的等离子体吸收峰窄而尖锐,且LSPR波长调谐范围也较小。与激光辐照前的三种金属薄膜相比,激光辐照后生成的三种金属纳米颗粒薄膜出现了更强的表面增强拉曼散射信号。有限差分时域仿真模拟出的样品的电场强度分布与实验得到的表面增强拉曼散射结果一致。  相似文献   

3.
直接在Ti基底表面制备的三维微纳米复合结构TiO_2具有比表面积大、光利用效率高、电荷传输阻抗小的优势。采用飞秒激光对Ti片进行刻蚀制备微米结构,使用H_2O_2在微米结构表面氧化制备纳米多孔TiO_2。该复合方法制备的三维微纳米复合结构TiO_2在紫外波长范围内平均反射率低于5%。光催化降解甲基橙结果显示,飞秒激光制备的微米结构形状和尺寸特征对催化性能有显著影响。该复合结构性质稳定,多次降解循环速率保持不变。飞秒激光化学复合制备的方法可以充分发挥飞秒激光在Ti基底表面超精密、可控制备的优势,对实现金属表面金属氧化物功能材料的制备具有重要意义。  相似文献   

4.
1 引言 激光冲击强化技术即利用能量数十焦,脉冲宽度纳秒数量级的强激光(100~200 J/cm2)辐照金属材料表面,表层金属材料或者表面吸收层吸收光能发生电离气化爆炸,在材料表层产生吉帕数量级以上的强冲击波,利用该冲击波的力学效应改变金属材料的显微结构组织,提高金属材料的屈服强度,显著改善其机械力学性能.  相似文献   

5.
用磁控溅射的方法在石英基底上制备了金(Au)膜,研究了Au膜在近激光损伤阈值(LIDT)飞秒脉冲激光辐照下的物相结构和表面形貌。结果表明:所制备的Au膜为(111)面取向生长的薄膜;近LIDT的激光辐照使辐照区的Au膜形成大晶粒,并由(111)单一取向变为多晶结构;Au膜晶粒尺寸的增大会导致表面粗糙度增加。实验结果为明确Au膜在飞秒激光作用下的损伤过程及后期应用提供了依据。  相似文献   

6.
选区激光熔化(SLM)技术是一种典型的快速成形技术,使用高能激光束熔化金属粉末,逐层堆积,直接成形复杂高性能金属零部件。为了对SLM成形多孔铝合金的性能进行研究,利用扫描电子显微镜、能量色散X射线荧光光谱、纳米压痕等测试手段分析了多孔铝合金的表面形貌、孔隙率、显微组织、相组成及微观力学性能。结果表明,激光功率为130 W时,孔隙率达到最大,多孔合金的显微组织细化,晶粒尺度达到纳米级别;激光功率变化对多孔铝合金的纳米硬度影响较大,但对弹性模量的影响不明显,其中α-Al相的弹性模量约为65 GPa,α-Al+Si共晶组织相的弹性模量约为85 GPa。  相似文献   

7.
为了研究后处理对CoCrNi中熵合金组织与性能的影响规律和机理, 采用激光增材技术制备了Co0.3288-Cr0.3288-Ni0.3288-Mo0.0136中熵合金。利用光学显微镜、扫描电子显微镜、X射线衍射仪、电子背散射衍射、3维表面形貌仪和万能拉伸试验机对CoCrNiMo0.0136中熵合金激光沉积态、热锻态和热锻喷砂态3种状态下的合金组织和性能进行了表征。结果表明, 激光沉积CoCrNiMo0.0136中熵合金在沉积态、热锻及热锻喷砂处理后均具有稳定的面心立方结构, 沉积态下, 合金的晶粒粗大, 因为微观偏析, 晶内存在元素分布不均的亚结构, 合金强度较低, 但塑性良好; 热锻处理后, 合金晶粒显著细化, 可以观察到较多的退火孪晶, 较激光沉积态, 屈服强度提高132.88%, 抗拉强度提高53.78%, 延伸率无明显变化; 热锻试样经喷砂处理后, 试样表面出现梯度纳米结构, 其厚度约为100μm, 塑性变形层中存在大量纳米孪晶, 此时合金具有良好的综合力学性能, 较激光沉积态, 屈服强度、抗拉强度分别提高220.09%和96.22%, 延伸率无显著变化。该研究通过热塑性加工及制备纳米梯度表面结构, 可有效提升Mo掺杂CoCrNi中熵合金静力学性能。  相似文献   

8.
飞秒激光双光子制造生物微器件微支架   总被引:1,自引:0,他引:1  
介绍了飞秒激光双光子吸收和光聚合的机制,将飞秒激光技术应用于生物相容性材料(ORMOCER)的三维微纳米加工中.在ORMOCER材料内实现了双光子光聚合,最高加工精度达到0.5 μm,突破了衍射极限.推导出双光子光聚合阈值的数学表达式,研究了扫描速度V和激光功率P对横向尺寸的影响规律.在此基础上采用飞秒激光双光子微细加工技术制备了典型的微生物器件--微井阵列、微柱阵列和光子晶体生物微型支架.  相似文献   

9.
采用连续点式锻压激光快速成形技术制备了TA15合金厚壁件,研究了不同退火温度对连续点式锻压激光快速成形TA15合金的显微组织以及室温拉伸力学性能的影响。分析了连续点式锻压塑性变形区大小及所制备TA15合金显微组织的形成机理,解释了退火过程中TA15合金层片组织转变为等轴组织的原因。实验结果表明,随着退火温度的升高,TA15合金退火组织等轴α晶粒体积分数越高,且晶粒尺寸越大,同时退火TA15合金强度降低、塑性升高。  相似文献   

10.
使用掺镱光子晶体光纤飞秒激光放大系统作为加工光源,利用激光诱导前向转移(LIFT)技术对铜膜进行加工,产生纳米结构。通过控制飞秒激光光源参数,得到不同纳米结构的金属薄膜。在功率较低时,能够得到纳米团簇;随着功率升高,团簇尺寸变大;到达一定功率时,出现纳米线结构。通过实验分析了飞秒激光与材料相互作用时发生的物理过程。利用该机理,对20,40,200nm三种厚度的铜膜在相同实验条件下的实验结果进行比较,获得了产生纳米团簇和纳米线结构薄膜的最佳条件。  相似文献   

11.
利用飞秒激光对ZnO晶体进行辐照,对辐照前后的晶体样品进行发光光谱及拉曼光谱检测.辐照后发光光谱的某些发光峰强度有明显增强,但未产生新的发光峰,表明没有新的缺陷结构产生,但晶体内锌空位、间隙位锌、间隙位缺陷浓度增加.拉曼光谱结果表明,辐照后ZnO晶体未产生相变,但随着辐照激光功率的增大,拉曼峰327 cm-1,437 cm-1强度明显减弱,表明在飞秒激光辐照作用下氧化锌的结晶程度下降.但574 cm-1峰值却随着辐照功率的增大而变大,分析表明该拉曼峰很可能是由于晶体内间隙位缺陷所致.同时实验过程中观察到飞秒激光倍频光产生.  相似文献   

12.
金属纳米颗粒具有较小的尺寸和大的表面体积比,由于量子限制效应和表面效应,表现出特殊的电子和光学性质.迄今为止,研究者们已对金属颗粒掺杂浓度较低的复合材料的性质做了大量研究,而掺杂浓度较高的材料受到的关注较少.我们采用磁控溅射法制备出含Ag浓度较高(13at.%~59at.%)的Ag:Bi2O3复合薄膜,使用飞秒脉冲激光研究了此类材料的三阶光学非线性和超快电子动力学过程。  相似文献   

13.
采用激光熔覆沉积(LCD)成形技术在锻造GH3536合金表面制备了GH3536合金,并对其显微组织与力学性能进行研究。结果表明,LCD成形GH3536合金的激光成形区与锻造基材之间形成了宽度为250~320μm的等轴晶结合区。此外,在成形区还发现了宽度为2~2.5 mm具有枝晶结构的鱼鳞状熔池,以及少量孔洞缺陷。在成形过程中,在结合区和成形区析出了M6C和M23C6碳化物。由于成形区GH3536合金具有比基材更高的室温拉伸强度,激光熔覆沉积成形GH3536表现出明显的各向异性,垂直于成形方向材料的抗拉强度与屈服强度比平行于成形方向分别高12.5%和9.1%,但其延伸率低7.7%。由于成形区GH3536合金晶粒尺寸较大,并且存在少量孔洞缺陷,其维氏硬度比基材降低了12.4%。  相似文献   

14.
以钛酸丁酯、无水乙醇、硝酸银等为原料,通过溶胶-凝胶法制备了不同Ag掺杂含量的TiO2纳米晶粉体,用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)检测分析了粉体的晶型转化、微观形貌和晶粒尺寸,用光致发光光谱(PL)表征材料的光电性能。结果表明,Ag掺杂后的TiO2纳米晶粉体的锐钛矿相比未掺杂Ag样品的含量有所增多,当Ag掺杂量为1%和3%时,锐钛矿的相对含量约为65%;随着Ag掺杂量的增加,锐钛矿晶粒尺寸逐渐减小;由TEM图像可知,Ag颗粒较为均匀地弥散在TiO2纳米晶粉体中;由PL荧光检测结果可知,Ag掺杂TiO2纳米晶粉体的荧光强度比未掺杂的TiO2纳米晶粉体的低。试验结果表明,Ag颗粒较为均匀地弥散在TiO2纳米晶粉体中,有利于在锐钛矿界(表)面形成Ti-O-Ag的键合,有效阻止锐钛矿向金红石的转变,同时抑制锐钛矿TiO2纳米晶粒的增长,Ag颗粒与TiO2纳米晶粉体接触形成肖特基势垒,加速光生电子由TiO2向Ag颗粒传输,减小光生电子与空穴的复合几率,从而提高TiO2纳米晶粉体的光电性能。  相似文献   

15.
采用飞秒激光对铜离子前驱体薄膜进行激光直写,原位还原得到铜纳米颗粒并连接形成导电铜微结构。实验研究了激光功率对铜微结构物相成分、微观结构及导电性能的影响。进一步,利用COMSOL仿真软件模拟了飞秒激光辐照下铜纳米颗粒二聚体的电场分布及温度场分布特征,计算了不同功率单脉冲激光对铜纳米颗粒电子温度及晶格温度的影响。仿真结果表明,激光诱导表面等离激元效应可实现对纳米颗粒的局域加热。当激光功率为960 mW时,纳米颗粒热点区域的晶格温度最高为698 K,纳米颗粒出现表面熔化现象,可实现颗粒间的连接。随着入射激光功率的升高,晶格温度升高,颗粒间连接程度提高,与实验结果相一致。  相似文献   

16.
激光冲击是一种以高功率脉冲激光辐照金属材料的新型表面改性处理技术。课题组通过对铝、钛和不锈钢这三种典型的金属结构材料,在有水约束层和记号笔涂层作保护层的情况下,进行激光冲击对比试验,获得强激光冲击作用下金属结构材料的损伤特性,并定量分析了激光冲击次数与金属材料表面凹坑深度的关系,结果表明凹坑深度与冲击次数呈线性关系且斜率与金属材料的屈服强度成反比。为了探究激光冲击光斑形貌对于金属材料损伤的影响,我们还对比了方斑和圆斑的冲击情况。  相似文献   

17.
张华  花国然  陈宏 《应用激光》2012,32(5):412-415
以单晶硅(111)为衬底,以等离子体增强化学气相沉积技术制备的非晶硅薄膜为前驱物,采用YAG激光晶化技术实现从非晶硅薄膜到纳米晶硅薄膜的相变过程。采用X射线衍射仪和原子力显微镜对YAG激光晶化薄膜进行了表征与分析。结果表明:薄膜的晶粒尺寸在纳米级;随着激光脉冲频率的增加,晶粒尺寸先变大后变小,其最佳结晶频率区间为10~12 Hz。  相似文献   

18.
通过分析不同角度激光打靶条件下等离子体的辐射特性,发现在相同激光辐照功率密度下,激光垂直辐照等离子体产生铝的LPX强度要比激光斜入射辐照时明显增强,其中类氢离子跃迁线强度增长最为明显。实验结果还表明,激光斜入射辐照时LPX源沿靶面法线方向的尺寸变大,谐线变宽。  相似文献   

19.
高强铝合金因其优异的比强度和塑性在航空航天领域得到广泛应用,近年来快速发展的增材制造技术为制备高强铝合金提供了新的方法。为此,利用激光选区熔化(SLM)成形技术制备了Al-Mg-Sc-Zr合金。通过X射线计算机断层扫描技术、光学显微镜、扫描电子显微镜、电子背散射衍射(EBSD)和室温拉伸试验对合金的微观组织和力学性能进行表征和研究。研究结果表明:SLM成形Al-Mg-Sc-Zr合金的成形质量较好,孔隙率仅为0.0013%,最大孔隙尺寸为126μm。合金的微观组织分为粗晶区和细晶区,熔池内部为粗晶区,熔池边界为细晶区。熔池边界处的Al3(Sc,Zr)颗粒为Al晶粒析出提供了大量形核位点,使得晶粒细化效果显著。试验得到平均晶粒尺寸为3μm,在更小的EBSD扫描步长下测得细晶区的平均晶粒仅为0.6μm。SLM成形Al-Mg-Sc-Zr合金的拉伸性能优异,各向异性较小。横向试样的拉伸强度略高,其屈服强度、抗拉强度和伸长率分别达到465 MPa、508.2 MPa和14.07%。SLM快速冷却的特性和添入的Sc、Zr元素使SLM成形Al-Mg-Sc-Zr合金拥有良好的成形质量、细化的晶粒组织和纳...  相似文献   

20.
采用单脉冲飞秒激光辐照单晶硅片和铜板,在材料表面产生烧蚀,并激发黑体辐射光谱。利用ICCD在纳秒尺度对激光诱导等离子体的辐射光谱进行测量,使用最小二乘法将采集光谱与普朗克曲线进行拟合,并用有限差分热扩散模型对温度变化曲线进行拟合,证明了黑体辐射法测量飞秒激光加工材料表面激光诱导等离子体温度的有效性。采用单脉冲激光(中心波长1030 nm,脉宽184 fs,1 mJ单脉冲能量)分别加工单晶硅片和铜板表面,测量了纳秒尺度时间分辨的激光诱导等离子体温度。对于单晶硅片和铜板,测量到以零时刻为中心的平均温度分别为231000 K和226000 K,衰减弛豫时间分别为4.41 ns和2.97 ns。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号