首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了建立厚度为1 nm左右HfO_2超薄膜的光谱椭偏测量方法,采用掠入射X射线反射技术进行国家/地区实验室间比对认证,其膜厚准确量值作为参比值,建立了HfO_2超薄膜的光谱椭偏结构拟合模型。研究了HfO_2超薄膜的光谱椭偏色散模型和拟合参数,最后确定了拟合色散模型为Tauc-Lorentz 3,拟合光谱范围为3.45~4.35 eV,表面污染层孔隙比例为60:40。  相似文献   

2.
采用射频磁控溅射法在玻璃基片上沉积了TiNx/Ag/TiNx低辐射膜,研究了制备工艺参数对低辐射膜光学性能的影响以及低辐射膜的耐腐蚀性能.结果表明,TiNx薄膜可对膜系起到很好的保护作用,当膜系的TiNx保护层厚度为32nm、内层TiNx膜厚为16nm(氮气流量为55sccm)、Ag层厚度为16nm时,制备的低辐射膜系具有优良的透过率、低辐射性能和耐腐蚀性能.  相似文献   

3.
针对膜厚标准样片的高精度测量问题,基于光谱型椭偏仪测量系统,提出对膜厚标准样片逐层分析的方法。利用相应的匹配算法,对比硅上二氧化硅模厚标准样片的等效结构模型和四相结构模型,实现对薄膜样片的厚度表征和椭偏分析。其次,通过对样片进行为期12周的测量考核,完成对薄膜样片表层分子吸附机理的分析。实验结果表明:针对研制的标称值为2~1 000 nm硅上二氧化硅膜厚标准样片,中间层的厚度存在先递减后递增的趋势。其中,在标称值为50~500 nm范围内,等效结构模型与四相结构模型测量结果的绝对误差在±0.2 nm以内,因此,可以采用等效结构模型的方法开展仪器的校准工作。另外,提出通过加热实现对标准样片解吸附的方案,有效解决超薄膜样片的储存问题。  相似文献   

4.
辉光弧光协同共放电方式制备TiN薄膜的研究   总被引:1,自引:0,他引:1  
分别采用中频磁控溅射、电弧离子镀及辉光弧光协同共放电混合镀(APSCD)三种方式在碳钢基体上制备TiN薄膜,采用原子力学显微镜、显微硬度计、台阶膜厚仪、电化学技术对薄膜表面形貌、显微硬度、膜厚、耐腐蚀性进行测试.研究结果表明:多弧离子镀薄膜颗粒的平均粗糙度为7.066 nm,混合镀薄膜颗粒的平均粗糙度为4.687 nm,在相同时间条件下,磁控溅射薄膜厚度为658 nm,混合镀膜厚度为1345 nm,混合镀工艺具有降低多弧离子镀粗糙度又可以克服磁控溅射沉积速率慢的优点.经过混合镀TiN薄膜后,基体表面显微硬度从226HV提高到1238 HV,在天然海水中测得混合镀膜层腐蚀电位比基体提高104 mV.  相似文献   

5.
采用不同的光学模型对厚度为6 nm,密度为2.2 g/cm3的理想SiO2薄膜理论曲线进行了拟合,得到了薄膜厚度的计算结果随所采取的薄膜密度变化的规律:选用更大的薄膜密度值进行拟合计算会得到更小的厚度结果,其趋势近似线性.参考GIXRR方法测量得到的薄膜物理结构的结果,给出了优化的拟合计算模型(薄膜密度为2.4 g/cm3、表面粗糙度为0.4 nm、界面粗糙度为0.3 nm),对于热氧化法制备的厚度小于10 nm的SiO2超薄膜,使用此模型进行拟合计算,可以得到比常规模型更为准确的厚度结果.采用优化的模型拟合了期望厚度为2,4,6,8,10 nm的SiO2超薄膜的SE实验曲线,得到的厚度结果分别为2.61,4.07,6.02,7.41,9.43 nm,与传统模型计算结果相比,分别降低了13.8%,10.3%,8.1%,7.3%和6.6%.  相似文献   

6.
椭圆偏振仪(或简称椭偏仪)在薄膜研究领域应用广泛.文章主要研究了相调制型光谱椭偏仪光路准直及参数优化过程,并通过硅上二氧化硅膜厚标准样品测量及数据拟合处理对光谱椭圆偏振仪进行校准.经过光路准直调整和参数优化后的椭圆偏振仪测量膜厚标准样品,拟合测量数据并将显示测量厚度值与标准样品厚度值比较,测量值在不确定范围内.  相似文献   

7.
采用电子束反应蒸发金属铪、APS离子辅助反应蒸发氧化铪、RF离子辅助反应蒸发氧化铪三种方式制备了单层HfO2薄膜,对样品的光学性能、结构特性以及抗激光损伤特性进行研究,结果表明,离子辅助使氧化铪薄膜更为致密;电子束蒸发氧化铪薄膜为非晶态,离子辅助制备氧化铪薄膜为晶态。选择合适的离子辅助工艺,有利于降低薄膜的缺陷吸收,提高氧化铪薄膜的抗损伤性能。  相似文献   

8.
应力对多层薄膜窄带滤光片透射特性的影响   总被引:1,自引:1,他引:0  
利用薄膜应力公式和弹性力学的小挠度弯曲理论,分析了多层薄膜应变与薄膜厚度变化的关系,建立起基片曲率与薄膜厚度变化关系的理论模型,提出了多层薄膜各层厚度不均匀变化的关系式。膜厚均匀变化只影响中心波长的漂移,而这种膜厚不均匀变化不仅引起中心波长也引起光谱的退化。在基片由10mm厚减薄到1.0mm时,对100GHz的窄带滤光片的模拟结果为中心波长减小0.977nm;0.5dB带宽减小0.19nm。引入膜厚随机误差的模拟结果为中心波长减小1.066nm;纹波增加0.36dB;峰值插损增加0.32dB,光谱进一步退化了。说明了基片曲率变化引起的光学薄膜厚度变化的不均匀性是引起这种窄带干涉滤光片光谱退化的主要原因之一。  相似文献   

9.
近年来,Si基ZnO∶Al透明导电薄膜界面处Si的渗透对薄膜性能的影响引起了人们的关注。本文采用射频磁控溅射法,在石英和Si衬底上沉积了不同厚度的Al、Si弱掺杂(1wt.%)的ZnO薄膜(AZO∶Si),系统研究了膜厚(等价于Si的渗透深度)对薄膜电学、光学性质的影响。结果显示,膜厚在几十nm时,薄膜的电阻率、载流子浓度和迁移率都强烈地依赖于膜厚,在膜厚为19nm时,载流子浓度和迁移率接近最小,电阻率较大,且呈现p型导电特性。随着膜厚增加,载流子浓度和迁移率都变大,电阻率减小并趋于稳定,膜厚在396nm附近时电阻率最小是7×10-3Ωc#m,此时的载流子浓度和迁移率分别是1.54×1020cm-3和5.66cm2 V-1s-1。膜厚达300nm以上时,Si的影响已可忽略。结合薄膜的X射线衍射(XRD)图谱、X射线光电子能谱(XPS)和紫外-可见光(UV-Vis)透射光谱探讨了膜厚(Si的渗透深度或过渡层厚度)对薄膜性能的影响及其相关机制。  相似文献   

10.
ITO透明导电薄膜厚度与光电性能的关系   总被引:1,自引:0,他引:1  
透明导电薄膜的厚度制约其光电性质。本研究利用磁控溅射技术制备了厚度变化范围为200-1500nm的ITO薄膜,探索了薄膜颜色、可见光透过率、面电阻与膜厚的关系。薄膜颜色随着膜厚的增加呈现有规律的变化,可见光透过率随薄膜厚度的增加而呈现振荡下降趋势,并出现了极大值(紫红色),振荡趋势可用多光束干涉解释;薄膜面电阻随膜厚的增加呈减小趋势,薄膜厚度为1387nm时,面电阻为1.3Ω/□,薄膜最小电阻率为1.8×10-4Ω.cm。文章给出了可以通过选择恰当的薄膜厚度,以尽可能满足透明导电薄膜面电阻、透过率两个相互矛盾的指标。  相似文献   

11.
朱嘉琦  孟松鹤  韩杰才  高巍 《功能材料》2004,35(Z1):2149-2152
采用过滤阴极真空电弧技术以相同的工艺条件在p(100)单晶硅衬底上制备了不同厚度的四面体非晶碳薄膜,并利用表面轮廓仪测试薄膜的厚度和应力,利用纳米压入仪测试薄膜的硬度、杨氏模量和临界刮擦载荷.试验表明,在一定的扫描波形条件下,薄膜大约以0.7 nm/s的沉积速率稳定生长.随着膜厚的增加,薄膜的应力持续降低,当膜厚超过30nm时,应力将低于5GPa;当膜厚超过300nm时,硬度和杨氏模量分别将近70GPa和750GPa,已经十分接近体金刚石的性能指标.另外,随着膜厚增加所产生的应力变化,也导致了可见光拉曼光谱非对称宽峰的峰位逐渐向低频偏移.  相似文献   

12.
张继成  王占山  吴卫东  许华 《材料导报》2005,19(Z1):81-82,86
介绍了用磁控溅射法制备Au/Gd(金/钆)多层膜的初步实验结果.在摸索出的工艺条件下,采用计算机定时控制膜厚的方法,按照设计的周期结构(设计周期厚度10nm,Au/Gd=5nm/5nm,总周期数为25)制备了界面清晰、表面光滑的多层膜样品.X-Ray衍射仪小角衍射测试的周期厚度为9.95nm,和设计值十分吻合,原子力显微镜(AFM)的检测表明,薄膜的表面粗糙度小于1.7nm.  相似文献   

13.
射频反应磁控溅射制备低辐射薄膜   总被引:7,自引:1,他引:7  
采用射频反应磁控溅射法制备了低辐射薄膜.对低辐射膜的薄膜结构的设计和测试结果表明:较合适的膜层结构是空气/二氧化钛/钛/银/二氧化钛/玻璃基片的多层结构.用扫描电镜分析了保护层钛层的作用,研究表明:银膜很容易氧化失效,失去反射红外紫外光作用,在表面镀覆钛保护层可以很好地保护银,避免银氧化,从而提高使用寿命.用分光光度计测试样品的透射率,当保护层钛层厚度为1 nm时,相应的膜系在可见光区(380 nm~780 nm),最高透射率可达82.4%,平均透射率是75%;在近红外区(780 nm~2500 nm)的平均透射率为16.2%,可以满足建筑物幕墙玻璃等低辐射膜的要求.  相似文献   

14.
孙兆奇  蔡琪  吕建国  宋学萍 《功能材料》2006,37(8):1246-1248
用直流磁控溅射在室温Si基片和载玻片上制备了厚度为7.6~81.3nm超薄Au膜,用X射线衍射及数字电桥对薄膜的微结构和电学性质进行了测试分析.微结构分析表明:制备的超薄Au膜仍为面心立方多晶结构;在膜厚d<46.3nm时,(111)晶粒平均晶粒尺寸随膜厚增加逐渐增大,当d>46.3nm后,晶粒尺寸几乎保持不变,甚至有所减小;(220)晶粒的平均晶粒尺寸则总是随膜厚的增加而增大.薄膜晶格常数均比PDF标准值(0.4078nm)稍小,随膜厚增加,薄膜晶格常数由0.4045nm增大到0.4077nm.电阻率分析结果表明,随着膜厚的增加,薄膜的电阻率经历了岛状膜的极大-网状膜的急剧减小-连续膜的缓慢减小.膜厚d>46.3nm后,由于薄膜中长出新的(111)小晶粒,电阻率略有增加.  相似文献   

15.
采用离子束溅射沉积法,在单晶Si基片上制备了不同厚度(1nm-100nm)的Co纳米薄膜。利用原子力显微镜和X射线光电子能谱仪对不同厚度的Co纳米薄膜的表面进行了分析和研究。结果表明:当薄膜厚度为1nm~10nm时,沉积颗粒形态随着薄膜厚度的增加将由二维生长的细长胞状过渡到多个颗粒聚集成的球状;当膜厚继续增加,小颗粒球消失,集结成大颗粒球,颗粒球呈现三维生长状态;表面粗糙度随着膜厚(膜厚为1nm~10nm)的增大,呈现先增加后减小的趋势,在膜厚为3nm时出现极值。通过XPS全程宽扫描和窄扫描,薄膜表面的元素成分为Co:主要以金属Co和Co氧化物的形式存在。  相似文献   

16.
采用新型脉冲磁控溅射技术制备了一系列氯化铬膜,对所制备的不同厚度薄膜进行了AFM和SEM形貌等分析.测定了薄膜的膜基结合强度和硬度,并对薄膜的摩擦学性能进行了研究。结果表明:通过使用铬过渡层可以提高膜基结合强度,镀层厚度对镀层摩擦学性能有影响,膜厚为1200nm的氯化铬膜试样显示出来高硬度、低摩擦系数和良好的抗磨性。  相似文献   

17.
利用电子束蒸发镀膜方法在PAMM上制备了金属铟薄膜, 通过方块电阻测量和原子力显微镜 (AFM) 表面形貌的分析, 结果表明:铟薄膜的电阻值随着薄膜生长厚度增加而减小;薄膜生长初始阶段基体表面形成了岛状不连续膜, 表面粗糙度随膜厚增加而增加, 此时薄膜不导电;当膜层厚度生长到120 nm时, 薄膜形成了下层连续上层为小孔洞的结构, 表面粗糙度在此厚度附近降低较明显;随着薄膜继续生长, 薄膜表面无论是水平方向还是垂直方向, 岛与岛相连形成十分光滑的膜层, 此时薄膜电阻迅速降低到3Ω, 薄膜导通。  相似文献   

18.
采用直流反应磁控溅射法在不同基片上制备了80nm和1000nm厚的氧化钒薄膜.采用X射线衍射仪、原子力显微镜及扫描电镜进行了薄膜微观结构分析.结果表明,薄膜的晶化受衬底影响较大,晶化随膜厚的增加而增强.不同衬底上生长的薄膜晶粒尺寸存在较大差异,Si3N4/Si衬底上生长的薄膜晶粒细小,薄膜较为平坦;玻璃衬底、Si衬底和α-Al2O3陶瓷衬底上生长的薄膜晶粒较为粗大.随着膜厚的增加,薄膜的晶粒尺寸明显增大,不同衬底上生长的二氧化钒薄膜晶粒都具有一种独特的"纺锤"形或"棒"形.  相似文献   

19.
本文采用电子束蒸镀技术制备了Fe/Mo金属多层膜,利用TEM等手段研究了Fe与Mo层厚度对薄膜微结构应力的影响.Fe与Mo层厚度相差较大而Fe单层膜厚薄到1.2 nm时,较薄的Fe在较厚的Mo层上外延生长.随着Mo厚度的变薄,Mo/Fe厚度比减少,Mo层没有足够的自由能约束Fe原子,Fe层形成稳定的bcc结构.当Fe外延生长在Mo层上时,晶格畸变导致铁钼层间产生很大的应力,使得薄膜出现均匀的细微裂纹.用胡克定律估算了其应力范围,约104MPa数量级.  相似文献   

20.
采用直流磁控溅射制备了多层膜Ta/缓冲层/[Co95Fe5/Cu]×12/Co95Fe5/Ta。实验发现,多层膜的磁阻性能受到缓冲层材料、各子层厚度以及退火处理的影响。采用优化的多层膜结构:Ni65Fe15Co20缓冲层厚8 nm、CoFe层厚1.55 nm、Cu层厚2.4nm,沉积态薄膜GMR值达到7.6%;而在外加磁场79.6×103A/m下,250℃保温2 h退火处理后,多层膜的GMR值进一步提高到11.9%,磁滞从18.7×102A/m降低到796 A/m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号