首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
研究了填料颗粒改性的超高分子量聚乙烯(UHMWPE)体系的拉伸与磨损性能。加入少量的粉煤灰(<10%)和SiC(30%)可提高体系的拉伸强度,并且颗粒越细小,越有利于拉伸强度的提高。SiC,Al2O3,特别是40目石英砂可大幅度提高(约4~6倍)体系的耐磨料磨损能力。试验结果表明,载荷P是影响UHMWPE体系磨损率的重要因素。载荷越大,磨损率越高,而与相对摩擦速度v关系不大。所得结果为减粘耐磨复合材料的仿生设计提供了可靠的依据  相似文献   

2.
铜纳米粒子对润滑油摩擦磨损性能的影响   总被引:3,自引:0,他引:3  
利用 MM2 0 0型磨损试验机研究了铜纳米粒子加入到润滑油中的摩擦磨损性能。结果表明 ,加入铜纳米粒子的润滑油表现出良好的抗磨性能  相似文献   

3.
分别研究MoS2、PTFE和石墨对UHMWPE耐摩擦性能的影响。结果表明:在载荷200 N,转速400 r/min的试验条件下,UHMWPE/石墨、UHMWPE、UHMWPE/MoS2和UHMWPE/PTFE的平均摩擦系数分别为0.27,0.30,0.35和0.39。掺杂石墨(质量分数9%)降低了UHMWPE的摩擦系数,在试验过程中减少了由于摩擦而产生的热量,从而提高了UHMWPE/石墨复合材料的耐磨性能。  相似文献   

4.
采用超声辅助铸造技术成功制造了TiC纳米颗粒增强2219铝基复合材料,并对其进行锻造和T6热处理.本文研究了TiC/AA2219纳米复合材料在5、10、20和30 N下的摩擦磨损性能.研究发现,引入大量的TiC颗粒(1.3 wt.%和1.7 wt.%)后,复合材料的硬度明显增加.在相同载荷下,纳米复合材料的摩擦系数随着...  相似文献   

5.
填料改性UHMWPE基复合材料拉伸磨损性能的研究   总被引:7,自引:0,他引:7  
研究了填料颗粒改性的超高分子量聚乙烯体系的拉伸与磨损性能,加入少理的粉煤灰可提高体系的拉伸强度,并且颗粒越细小,越有利于拉伸强度的提高。SiC,Al2O3,特别是40目石英砂可大幅度提高体系的耐磨料磨损能力。  相似文献   

6.
钢铜摩擦副表面粗糙度,硬度对摩擦磨损性能的影响   总被引:1,自引:0,他引:1  
本文利用双圆盘滚子试验机,研究了钢铜摩擦副试件表面粗糙度、硬度对摩擦磨损性能的影响机理。通过形貌仪和显微镜的检测,分析了不同硬度条件下,表面粗糙度的作用效果。同时,还在扫描电镜上分析了硬度影响曲线的突变状态,提出了在现有生产加工条件下,减少钢铜摩擦副(主要指蜗杆传动副)磨擦,降低磨损的几个有效途径。  相似文献   

7.
用MA技术制备了C体积分数为10%的Cu-C固溶体粉体,用溶胶-凝胶(sol-gel)烧结技术制备了平均尺寸为12 nm的γ-Al2O3颗粒和用SPS方法制备了纳米Al2O3颗粒增强Cu-C固溶体基复合材料。采用X射线衍射仪对MA粉体、干凝胶和煅烧粉体进行了物相分析;通过JSM-5500LV型扫描电镜对磨损表面形貌进行观察分析并分析其磨损机制;使用MG-2000型高温摩擦磨损试验机对制备的复合材料进行了干摩擦实验并测定其磨损量。结果表明:纳米氧化铝颗粒体积分数及磨损载荷对复合材料摩擦磨损特性有显著影响,纳米氧化铝的体积分数从0%增加到2%,Cu基复合材料的磨损量从6.2 mg降到2.1 mg。  相似文献   

8.
SiC颗粒对铝基合金摩擦磨损性能的影响   总被引:1,自引:0,他引:1  
研究了SiC颗粒增强铝基复合材料的摩擦磨损特性,结果表明:SiC特性的加入提高了材料的耐磨性,并随SiC粒子加入量的增加耐磨性增大  相似文献   

9.
纳米级镍粉改善润滑油摩擦磨损性能的研究   总被引:4,自引:0,他引:4  
在MHK-500型环块摩擦磨损试验机上,研究了纳米级金属镍粉(直径在10~50nm)加入到矿物油中的润滑性能,结果表明:在低中滑动速度下(滑动速度分别为1.285m/s和2.57m/s),加有纳米级镍粉的润滑油表现出优良的抗磨性能.  相似文献   

10.
SiCp增强铝基复合材料的制备和摩擦磨损性能   总被引:1,自引:0,他引:1  
介绍了挤压铸造法制备SiCp增强铝基复合材料的方法,研究了该复合材料的摩擦磨损性能,分析了材料的磨损机理。在本研究的实验条件下,铝合金的磨损严重,而复合材料的耐磨性能良好。由于SiCp增强铝基复合材料的密度低,因而在汽车工业中有广泛的应用前景。  相似文献   

11.
超高分子量聚乙烯纤维防弹复合材料的研究   总被引:9,自引:0,他引:9  
讨论了不同基体种类、不同结构超高分子量聚乙烯(UHMWPE)纤维复合材料的防弹性能。实验结果表明:聚氨酯(PU)和低密度聚乙烯(LDPE)均可以作为UHMWPE纤维防弹复合材料的基体使用;正交辅层结构为UHMWPE纤维防弹复合材料的首选结构。另外,还研究了基体含量、模压工艺对UHMWPE纤维复合材料防弹性能的影响,确定以LDPE为基体时其最佳基体含量在26%左右,同时指出模压工艺对复合材料的防弹性能无显著相关性。  相似文献   

12.
摩擦磨损试验机极地低温环境的模拟研究   总被引:1,自引:0,他引:1  
为模拟极地甲板机械摩擦性能实验所需的低温环境,利用德国Julabo专家型超低温加热制冷循环器FP89-HL作为冷源,使用轻盈坚固的铝合金制作为腔体,研制出了分别用于往复摩擦磨损试验机和旋转销盘摩擦磨损试验机的两种低温腔. 建立了腔空气流动与换热的物理和数学模型,并运用FLUENT软件进行模拟仿真. 实验结果表明:在环境温度为18 ℃条件下,往复式低温腔内最低温度可达-64 ℃,旋转式低温腔内最低温度达-70 ℃,且仿真结果与腔体测温实验结果吻合良好. 将低温循环系统与摩擦磨损试验机相结合进行低温摩擦磨损环境的设计、模拟和实现,拓宽了摩擦磨损试验机的工作温度范围,相比于传统的仅对试样冷却的低温摩擦磨损试验机而言,通过环境冷却模拟真实的低温摩擦工况具有更加接近实际工作条件的优势.  相似文献   

13.
研究了电子束辐照交联超高分子量聚乙烯的等温结晶行为与辐照剂量、交联度和结晶温度的关系.首先,用差示扫描量热技术(DSC)研究了以0,50,100 kGy电子束辐照的超高分子量聚乙烯分别在不同的温度下等温结晶过程,发现半结晶时间(t1/2)和Avrami指数(n值)与结晶温度有关.与未交联超高分子量聚乙烯相比,交联聚乙烯等温结晶动力学的t1/2和n值较小,证明交联网络可加速聚乙烯成核,且抑制晶体生长.在此基础上,采用阶梯式温度"跃变"方法,诱导交联聚乙烯分子链在不同温度下分别结晶,得到具有多个熔融温度的交联聚乙烯结晶,而未交联的超高分子量聚乙烯则只显示单一熔融温度,证实了在交联聚乙烯中存在的不均匀交联网络结构导致分子链结晶能力不同.  相似文献   

14.
研究了热压成型气氛对超高分子量聚乙烯(UHMWPE)力学和生物摩擦学性能的影响.分别在常规气氛和10-3 Pa的低真空环境下通过热压成型工艺制备UHMWPE试样,对其断口形貌、密度、球压痕硬度、冲压剪切强度、抗划痕性能和生物摩擦学性能进行测试分析.结果表明,常规气氛模压成型UHMWPE会在试样内部残留有气孔缺陷;低真空环境下模压成型UHM-WPE能有效地消除试样内的气孔缺陷,并增加其密度、硬度、冲压剪切强度和抗划痕性能.小牛血清润滑下的往复式摩擦磨损结果显示,低真空环境模压成型UHMWPE试样的耐磨性能比常规气氛模压成型的耐磨性能提高18.9%.  相似文献   

15.
以马来酸酐接枝SEBS (MA-SEBS)作相容剂,采用溶液共混的方法制备超高分子量聚乙烯(UHMWPE)/碳纳米管(CNTs)复合材料.熔融结晶的UHMWPE/CNT复合材料是将其熔体以20℃/分的速率降温结晶而成.采用差示扫描量热法(DSC)研究了以不同方式结晶制备的UHMWPE/CNT复合材料的结晶和熔融行为.结果表明UHMWPE/CNT复合材料中UHMWPE相在溶液态结晶比在熔融态结晶形成的晶片厚,因而表现出更高的熔点(Tm)和结晶度(Xc).随着CNTs含量增加,UHMWPE/CNT复合材料中UHMWPE相的结晶温度(Tc)趋于提高.而且MA-SEBS的加入降低了UHMWPE/CNT复合材料中UHMWPE相的Tm 和 Tc. 此外UHMWPE/CNT复合材料中UHMWPE相的结晶速率随CNTs的引入而提高; MA-SEBS起相容剂的作用,改善了CNTs在UHMWPE基体中的分散性,使UHMWPE相的结晶速率进一步提高.  相似文献   

16.
以马来酸酐接枝SEBS(MA-SEBS)作相容剂,采用溶液共混的方法制备超高分子量聚乙烯(UHMAWPE)/碳纳米管(CNTs)复合材料。熔融结晶的UHMWPE/CNT复合材料是将其熔体以20℃/分的速率降温结晶而成,采用差示扫描量热法(DSC)研究了以不同方式结晶制备的UHMWPE/CNT复合材料的结晶和熔融行为,结果表明UHMWPE/CNT复合材料中UHMWPE相在溶液态比在熔融态结晶形成的晶片厚,因而表现出更高的熔点(Tm)和结晶度(Xc)。随着CNTs含量增加。UHMWPE/CNT复合材料中UHMWPE相的结晶温度(Tc)趋于提高。而且MA-SEBS的加入降低了UHMWPE/CNT复合材料中UHMWPE相的Tm和Tc。此外UHMWPE/CNT复合材料中UHMWPE相的结晶速率随CNTs的引入而提高;MA-SEBS起相容剂的作用,改善了CNTs在UHMWPE基体中的分散性,使UHMWPE相的结晶速率进一步提高。  相似文献   

17.
利用HIT-1型球盘式摩擦磨损试验台,以C/C复合材料与GCr15钢为配副进行摩擦磨损实验。研究了C/C复合材料的摩擦系数与时间、载荷和速度的关系,分析了工况环境对摩擦系数的影响,获得了磨损量与载荷和速度的相关关系。结果表明:C/C复合材料的摩擦系数在摩擦磨损初期减小,随后在较小区间内平稳波动;摩擦系数在不同载荷条件下随速度变化趋势不同,当载荷为8 N时摩擦特性随速度变化最稳定,速度为0.576 m/s时摩擦特性随载荷变化最稳定;不同试验环境中摩擦性能呈现规律不同;C/C复合材料摩擦磨损过程中磨损率随速度缓慢增大,随载荷缓慢增大。  相似文献   

18.
Wear particles of ultrahigh molecular weight polyethylene (UHMWPE) are the main cause of long-term failure of total joint replacements. Therefore, increasing its wear resistance or bioactivity will be very useful in order to obtain high quality artificial joints. In our study, UHMWPE composites filled with the bovine bone hydroxyapatite (BHA) were prepared by the method of compression moulding. A ball-on-disc wear test was carried out with a Universal Micro-Tribometer to investigate the friction and wear behavior of a Si3N4 ceramic ball, cross-sliding against the UHMWPE/BHA composites with human plasma lubrication. At the same time, the profiles of the worn grooves on the UHMWPE/BHA surface were scanned. The experimental results indicate that the addition of BHA to UHMWPE had a significant effect on the biotribological behavior of UHMWPE cross-sliding against the Si3N4 ceramic ball. The addition of BHA powder enhanced the hardness and modulus of elasticity of these composites and decreased the friction coefficients and wear rates under conditions of human plasma lubrication. When the added amount of BHA powders was up to 20%~30%, UHMWPE/BHA composites demonstrated the designed performance of the mechanical properties and biotribological behavior.  相似文献   

19.
将甲壳素分别在含硼氢化钠的氢氧化钠-正戊醇中和氢氧化钠-水中进行脱乙酰反应,再将得到的壳聚糖用过氧化氢-水反应体系降解,制得不同分子量的超高脱乙酰度壳聚糖.在氢氧化钠-正戊醇中制备的壳聚糖分子量介于24万和35万之间,在氢氧化钠-水中制备的壳聚糖分子量介于81万和100万之间.实验结果表明:在氢氧化钠-正戊醇体系中反应5 h或在氢氧化钠-水体系中反应6 h所制备壳聚糖的脱乙酰度均达98%以上,在脱乙酰反应中,延长反应时间脱乙酰度增大;采用过氧化氢-水反应体系降解壳聚糖时,影响壳聚糖分子量的因素包括过氧化氢与壳聚糖的投料比、反应温度及反应时间,而过氧化氢与壳聚糖的投料比是主要的影响因素.改变这些影响因素,可制备出分子量介于3.2万和56万之间的壳聚糖.  相似文献   

20.
电子束辐照对超高分子量聚乙烯纤维结构与性能的影响   总被引:4,自引:0,他引:4  
用电子加速器对超高分子量聚乙烯纤维进行辐照交联,探讨了不同剂量、剂量率辐照下结构与性能的变化.结果表明:凝胶含量随剂量率增大先增大而又减少,断裂强度随剂量增大而降低,尤其是在高剂量时下降得更为明显,而且随着剂量的增大纤维表面形貌被刻蚀得更为严重;当剂量为400kGv时,剂量率为8.5kGy/s时的刻蚀最为严重。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号