首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Perovskite solar cells have attracted significant attention in just the past few years in solar cell research fields, where the power conversion efficiency was beyond 22.1%. Now, the most important challenge for perovskite solar cells in practical applications is the stability issue. In this mini-review, we will summarize the degradation mechanism of perovskite solar cells, including the perovskite material itself and also the interfaces. While we also provide our opinion on improving the stability of perovskite solar cells.  相似文献   

2.
Inverted perovskite solar cells (IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long-term stability issues are the main obstacles that deeply hinder the development of devices. Herein, we demonstrate a facile atomic layer deposition (ALD) processed tin dioxide (SnO2) as an additional buffer layer for efficient and stable wide-bandgap IPSCs. The additional buffer layer increases the shunt resistance and reduces the reverse current saturation density, resulting in the enhancement of efficiency from 19.23% to 21.13%. The target device with a bandgap of 1.63 eV obtains open-circuit voltage of 1.19 V, short circuit current density of 21.86 mA/cm2, and fill factor of 81.07%. More importantly, the compact and stable SnO2 film invests the IPSCs with superhydrophobicity, thus significantly enhancing the moisture resistance. Eventually, the target device can maintain 90% of its initial efficiency after 600 h storage in ambient conditions with relative humidity of 20%–40% without encapsulation. The ALD-processed SnO2 provides a promising way to boost the efficiency and stability of IPSCs, and a great potential for perovskite-based tandem solar cells in the near future.  相似文献   

3.
Hole transport materials (HTMs), as a critical role in the hole extraction and transportation processes, highly influence the efficiency and stability of perovskite solar cells (PSCs). Despite that several efficient dopant-free HTMs have been reported, there is still no clear structure-property relationship that could give instructions for the rational molecular design of efficient HTMs. Thus, in this work, a series of donor–acceptor-donor (D–A–D) type carbazole-based small molecules, TM-1 to TM-4, have been carefully designed and synthesized. By varing the electron acceptor unit from benzene to pyridine, pyrazine and diazine, their packing structure in single crystals, optical and electronic properties have shown a great difference. While as dopant-free HTM in p-i-n type PSCs, TM-2 improved the device photovoltaic performance with a power conversion efficiency from 15.02% (based on PEDOT:PSS) to 16.13%. Moreover, the unencapsulated device based on TM-2 retains about 80% of its initial efficiency after 500 h storage in ambient environment, showing the superior stability.  相似文献   

4.
The close-to-optimal band gap, large absorption coefficient, low manufacturing cost and rapid increase in power conversion efficiency make the organic-inorganic hybrid halide (CH3NH3PbI3) and related perovskite solar cells very promising for commercialization. The properties of point defects in the absorber layer semiconductors have important influence on the photovoltaic performance of solar cells, so the investigation on the defect properties in the perovskite semiconductors is necessary for the optimization of their photovoltaic performance. In this work, we give a brief review to the first-principles calculation studies on the defect properties in a series of perovskite semiconductors, including the organic-inorganic hybrid perovskites and inorganic halide perovskites. Experimental identification of these point defects and characterization of their properties are called for.  相似文献   

5.
PI衬底柔性透明硅薄膜太阳能电池的制备及性能   总被引:1,自引:1,他引:0  
利用硬质玻璃为载板,采用传统硅薄膜太阳能电池生产设备,在聚酰亚胺(PI)塑料薄膜衬底上沉积了B掺杂的ZnO(BZO)薄膜,并以此作为前电极制备了单节电池结构及多节串联一体结构的非晶硅(a-Si)太阳能电池;研究了PI衬底上BZO薄膜的光学及电学性能。结果表明,PI衬底上沉积BZO薄膜后在300~1 200 nm波长范围的透光率为76.63%,方块电阻19.7?/□。所制备的单节和多节串联一体结构的a-Si薄膜太阳能电池的转化效率分别达到6.45%和5.1%,封装后电池组件具有一定的透光性,透光率约达到30.2%。  相似文献   

6.
Applications of cesium in the perovskite solar cells   总被引:1,自引:0,他引:1  
Perovskite solar cells have experienced an unprecedented rapid development in the power conversion efficiency (PCE) during the past 7 years, and the record PCE has been already comparable to the traditional polycrystalline silicon solar cells. Presently, it is more urgent to address the challenge on device stability for the future commercial application. Recently, the inorganic cesium lead halide perovskite has been intensively studied as one of the alternative candidates to improve device stability through controlling the phase transition. The cesium (Cs)-doped perovskites show more superior stability comparing with organic methylammonium (MA) lead halide perovskite or formamidinium (FA) lead halide perovskite. Here, recent progress of the inorganic cesium application in organic-inorganic perovskite solar cells (PSCs) is highlighted from the viewpoints of the device efficiency and the device stability.  相似文献   

7.
Flexible perovskite solar cells (FPSCs) are supposed to play an important role in the commercialization of perovskite solar cells due to their unique properties,such as high efficiency,thin thickness and being compatible with roll to roll (R2R) pro-cess for mass production.At present,deformable and lightweight FPSCs have been successfully prepared and applied as power supply by integrating with different wearable and portable electronics,which opens a niche market for photovoltaics.In this mini review,we will introduce the recent progress of FPSCs from the aspect of small-area flexible devices,R2R processed devices with large scale and emerging flexible cells with deformability and stretchability.Finally,conclusion and outlook are provided.  相似文献   

8.
基于钙钛矿材料的太阳能电池是一种受到广泛关注的新型太阳能电池。根据钙钛矿太阳能电池结构的不同将其分为四类,综述了钙钛矿太阳能电池的研究现状和最新进展。详细介绍了各类钙钛矿太阳能电池的结构和性能,分析总结了其优缺点。最后展望了钙钛矿太阳能电池未来的发展趋势。  相似文献   

9.
Effects of defect states on the performance of perovskite solar cells   总被引:1,自引:0,他引:1  
We built an ideal perovskite solar cell model and investigated the effects of defect states on the solar cell''s performance. The verities of defect states with a different energy level in the band gap and those in the absorption layer CH3NH3PbI3 (MAPbI3), the interface between the buffer layer/MAPbI3, and the interface between the hole transport material (HTM) and MAPbI3, were studied. We have quantitatively analyzed these effects on perovskite solar cells'' performance parameters. They are open-circuit voltage, short-circuit current, fill factor, and photoelectric conversion efficiency. We found that the performances of perovskite solar cells change worse with defect state density increasing, but when defect state density is lower than 1016 cm-3, the effects are small. Defect states in the absorption layer have much larger effects than those in the adjacent interface layers. The perovskite solar cells have better performance as its working temperature is reduced. When the thickness of MAPbI3 is about 0.3 μm, perovskite solar cells show better comprehensive performance, while the thickness 0.05 μm for Spiro-OMeTAD is enough.  相似文献   

10.
利用低压金属有机化学气相沉积(LP-MOCVD)技术在PET柔性衬底上低温生长绒面结构ZnO-TCO薄膜,DEZn和H2O作为源材料,B2H6作为掺杂剂.详细研究了薄膜掺杂流量对ZnO薄膜微观结构以及光电性能影响.优化获得的PET/ZnO:B薄膜厚约为1 500nm时,绒面结构PET/ZnO薄膜的方块电阻约为10Ω,可...  相似文献   

11.
Interfacial engineering has made an outstanding contribution to the development of high-efficiency perovskite solar cells(PSCs).Here,we introduce an effective interface passivation strategy via methoxysilane molecules with different terminal groups.The power conversion efficiency(PCE)has increased from 20.97%to 21.97%after introducing a 3-isocyanatopropyltri-methoxy silane(IPTMS)molecule with carbonyl group,while a trimethoxy[3-(phenylamino)propyl]silane(PAPMS)molecule con-taining aniline group deteriorates the photovoltaic performance as a consequence of decreased open circuit voltage.The im-proved performance after IPTMS treatment is ascribed to the suppression of non-radiative recombination and enhancement of carrier transportation.In addition,the devices with carbonyl group modification exhibit outstanding thermal stability,which maintain 90%of its initial PCE after 1500 h exposure.This work provides a guideline for the design of passivation molecules aim-ing to deliver the efficiency and thermal stability simultaneously.  相似文献   

12.
Authenticity of conventional circuit model, to interpret the characteristics of polymer solar cells (PSCs) is examined. Conventional circuit model is found to be quite limited, and various assumptions used there are not valid for PSCs. By understanding the nature of photovoltaic characteristics, through detailed investigations, we developed an improved circuit model, which explains correctly the behavior of PSCs under different environmental conditions. Investigations are carried out on the solar cells, made of the blend of regioregular poly(3‐hexylethiophene) (P3HT) and phenyl [6,6] C61 butyric acid methyl ester (PCBM). The model is developed by treating both the dark and illuminated characteristics separately, even the characteristics were dealt with separately in reverse and forward biases. The formulated equivalent circuit model helps us in explaining many other important features, observed in the characteristics of PSCs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Defects as non-radiative recombination centers hinder the further efficiency improvements of perovskite solar cells (PSCs). Additive engineering has been demonstrated to be an effective method for defect passivation in perovskite films. Here, we employed (4-methoxyphenyl) potassium trifluoroborate (C7H7BF3KO) with \begin{document}${{\rm{BF}}_3^-}$\end{document} and K+ functional groups to passivate spray-coated (FAPbI3)x(MAPbBr3)1–x perovskite and eliminate hysteresis. It is shown that the F of \begin{document}${{\rm{BF}}_3^-}$\end{document} can form hydrogen bonds with the H atom in the amino group of MA+/FA+ ions of perovskite, thus reducing the generation of MA+/FA+ vacancies and improving device efficiency. Meanwhile, K+ and reduced MA+/FA+ vacancies can inhibit ion migration, thereby eliminating hysteresis. With the aid of C7H7BF3KO, we obtained hysteresis-free PSCs with the maximum efficiency of 19.5% by spray-coating in air. Our work demonstrates that additive engineering is promising to improve the performance of spray-coated PSCs.  相似文献   

14.
We report a total‐area efficiency of 15.9% for flexible Cu(In,Ga)Se2 thin film solar cells on polyimide foil (cell area 0.95 cm2). The absorber layer was grown by a multi‐stage deposition process at a maximum nominal process temperature of 420°C. The Na was added via evaporation of a NaF layer prior to the absorber deposition leading to an enhanced Voc and FF. Growth conditions and device characterization are described. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Recently, perovskite solar cells have attracted tremendous research interest due to their amazing light to electric power conversion efficiency (PCE). However, most high performance devices usually use mesoporous TiO2 as the electron transport layer (ETL), which increases cost for practical application. Here, TiO2/SnOxCly double layer was employed as the ETL for planar perovskite solar cells. Compared with bare TiO2, perovskite solar cell based on TiO2/SnOxCly shows drastically improved power conversion efficiency and reduced hysteresis. These improvements are attributed to TiO2/SnOxCly which could enhance electron extraction and reduce surface trap-state.  相似文献   

16.
A photovoltaic technology historically goes through two major steps to evolve into a mature technology. The first step involves advances in materials and is usually accompanied by the rapid improvement of power conversion efficiency. The second step focuses on interfaces and is usually accompanied by significant stability improvement. As an emerging generation of photovoltaic technology, perovskite solar cells are transitioning to the second step of their development when a significant focus shifts toward interface studies and engineering. While various interface engineering strategies have been developed, interfacial characterization is crucial to show the effectiveness of interfacial modification. Here, we review the characterization techniques that have been utilized in studying interface properties in perovskite solar cells. We first summarize the main roles of interfaces in perovskite solar cells, and then we discuss some typical characterization methodologies for morphological, optical, and electrical studies of interfaces. Successful experiences and existing problems are analyzed when discussing some commonly used methods. We then analyze the challenges and provide an outlook for further development of interfacial characterizations. This review aims to evoke strengthened research devotion on novel and persuasive interfacial engineering.  相似文献   

17.
柔性衬底硅基太阳电池ZAO透明导电膜的研究   总被引:1,自引:1,他引:0  
采用孪生对靶直流磁控溅射的方法,在室温下制备了ZnO:Al(ZAO)薄膜材料,将其应用于柔性衬底非晶硅薄膜太阳电池的窗口电极。通过调整Ar气流量(1.67×10-7 m3/s~8.33×10-7 m3/s),优化了ZAO薄膜的结构、成份及光电性能。得到如下结论:理想的Ar气流量为3.33×10-7 m3/s,此时ZAO薄膜具有较高的晶化率和C轴择优取向,薄膜的霍尔电阻率达为4.26×10-4Ω.cm,载流子浓度达到1.8×1021cm-3,可见光波长范围内的光学透过率达到85%以上。将优化后的ZAO薄膜用于柔性衬底非晶硅薄膜太阳电池的窗口电极,转化效率达到了4.26%。  相似文献   

18.
PEDOT:PSS is one of the most widely used hole transporting layer for inverted perovskite solar cells. Yet the performances of the corresponding perovskite solar cells are not satisfactory. Here, we demonstrate that KCl modified PEDOT:PSS film can promote the crystallization of perovskite film and enlarge the perovskite crystals. At the same time, KCl can diffuse into the perovskite film and effectively passivate the defects. As a result, inverted perovskite solar cells fabricated on 10 mg mL−1 PEDOT:PSS/KCl films exhibit an average power conversion efficiency of 16.24 %, which is enhanced by 17.77 % compared with the reference perovskite solar cells. Open circuit voltage of 1.009 V and power conversion efficiency of 17.09 % have also been demonstrated using the optimized 10 mg mL−1 PEDOT:PSS/KCl films.  相似文献   

19.
Heterojunction and sandwich architectures are two new-type structures with great potential for solar cells. Specifically, the heterojunction structure possesses the advantages of efficient charge separation but suffers from band offset and large interface recombination; the sandwich configuration is favorable for transferring carriers but requires complex fabrication process. Here, we have designed two thin-film polycrystalline solar cells with novel structures:sandwich CIGS and heterojunction perovskite, referring to the advantages of the architectures of sandwich perovskite (standard) and heterojunction CIGS (standard) solar cells, respectively. A reliable simulation software wxAMPS is used to investigate their inherent characteristics with variation of the thickness and doping density of absorber layer. The results reveal that sandwich CIGS solar cell is able to exhibit an optimized efficiency of 20.7%, which is much higher than the standard heterojunction CIGS structure (18.48%). The heterojunction perovskite solar cell can be more efficient employing thick and doped perovskite films (16.9%) than these typically utilizing thin and weak-doping/intrinsic perovskite films (9.6%). This concept of structure modulation proves to be useful and can be applicable for other solar cells.  相似文献   

20.
Optical and electrical simulations were carried out for thin film silicon solar tandem cells with intermediate reflector layer (IRL) between top and bottom cell and compared with experimental external quantum efficiency and current voltage characteristics results. Reference data were collected from a series of tandem cells with different thicknesses of the top cell absorber layer (160–240 nm), the bottom cell absorber layer (1750–2100 nm), and the transparent conductive oxides based IRL (10–80 nm). It turned out that for capturing correctly the influence of the IRL on the light management as a function of the IRL thickness, the conventional semicoherent approach is not sufficient. Whereas the optical properties of a very thin IRL are governed by interference effects that are best calculated using a fully coherent model, increasingly thicker IRL show a more and more incoherent behavior. By taking into account, the interface morphology and angular light distribution within the cell stack an algorithm for the effective IRL reflectivity was proposed that explains the experimental findings very well. The consecutive electrical simulations were carried out with the device simulator ASA. The dependence of short circuit current density jsc and fill factor FF on the thickness dIRL of the IRL is in qualitative agreement between simulation and experiment showing coincident extrema in jsc(dIRL) and FF(dIRL) at the current matching point. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号