共查询到13条相似文献,搜索用时 78 毫秒
1.
针对蝗虫优化算法容易陷入局部最优、收敛精度不足等缺点,提出一种改进蝗虫优化算法。将混沌算法与蝗虫优化算法融合,对蝗虫优化算法进行混沌初始化,改善初始种群质量;再引入差分进化算法的差分策略,通过变异、交叉和选择过程,维持种群的多样性,增大算法跳出局部最优的可能性,从而使算法能搜索到更好的解;在个体更新部分引入了粒子群算法的思想,以当前的最优个体为目标进行个体位置更新,加快算法寻优速度。将改进蝗虫优化算法用于多晶硅太阳能电池模型参数的辨识中,并通过与其它智能优化算法的比较,验证了改进蝗虫算法辨识太阳能电池参数的有效性和优越性。通过实验验证了改进蝗虫优化算法在不同光照下对太阳能电池参数的辨识效果。 相似文献
2.
为了解决当前光伏组件模型中存在的参数辨识精度低和稳定性差的问题,提出了一种基于折射学习机制的蝠鲼觅食优化算法的三二极管光伏组件参数辨识模型(RLMRFO-TDM)。该模型将差分进化机制融入到MRFO算法的种群更新环节,提高了MRFO算法的局部探索能力,并加快了MRFO算法收敛速度;引入折射学习机制改善了MRFO算法的随机性,提高了种群在搜索区域中的离散性和MRFO算法的全局搜索能力。利用基准测试函数,验证了RLMRFO算法的有效性;采用STP6-120/36和STM6-40/36两种光伏组件的数据集对RLMRFO-TDM模型的参数辨识进行性能测试,与其他模型相比,RLMRFO-TDM模型的辨识精度、稳定性以及收敛速度表现最优。 相似文献
3.
4.
5.
基于磁链理论和Monte-Carlo法,建立了磁流体薄膜(MFF)传感模型和MFF透射模型,分析了磁流体透射特性。采用粒子群算法对MFF透射模型进行了参数辨识,分析了群体数目、迭代次数、惯性权重、加速度因子等参数选值对算法运行结果的影响,并选取了最佳参数组合。搭建了MFF电流传感器实验平台,运用MFF透射模型对MFF电流传感器进行了仿真预测,分析了MFF厚度和粒子浓度对MFF透射性的影响,实验及仿真结果表明该模型预测误差在2.3%以内,该MFF电流传感器的测量灵敏度达到12 μW/A。 相似文献
6.
7.
8.
针对影响电液伺服系统跟踪性能的非线性摩擦干扰问题,提出了一种改进的萤火虫算法对摩擦模型的参数进行辨识,通过将自适应步长和惯性因子相结合,对丧失移动能力的萤火虫进行随机优化处理,并引入全局并行搜索能力,提高了萤火虫算法的寻优能力。通过函数寻优和参数辨识测试,结果表明改进的萤火虫算法具有更好的寻优性能。最后基于辨识模型搭建摩擦状态观测器,对于仿真中速度零点的抖振现象,引入SIGMOID函数修正摩擦观测器,实验结果表明,经修正的前馈模糊控制器可以有效地抑制摩擦对伺服系统的不利影响,进一步提高伺服系统的跟踪性能。 相似文献
9.
10.
11.
12.