首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
煤气化技术是煤炭梯级利用的主要方式之一,近年来发展迅速、使用广泛。但煤气化过程无法将煤中的碳全部转化利用,煤经过气化后仍有部分可燃物残留在气化飞灰中。其中循环流化床煤气化产生的气化飞灰碳含量相对较高,低位发热量达12~25 MJ/kg,若能加以利用会显著提高碳的利用率。气化飞灰的挥发分极低,传统燃烧技术很难处理。为了实现气化飞灰的高效燃烧,并同时控制燃烧的NO_x排放水平,提出并发展了预热燃烧技术。该技术将气化飞灰在流化床预热燃烧器中进行预热,在缺氧条件下通过化学反应产生热量将燃料自身预热至850~950℃并脱除部分燃料氮,再将预热后的燃料通入煤粉炉炉膛,在炉内通过分级配风实现高效低NO_x燃烧。针对一台采用预热燃烧技术的气化飞灰预热燃烧锅炉,开展调试和工程试验,通过考察预热燃烧器和炉膛内的温度分布和变化规律、气化飞灰的燃烧效率以及NO_x原始排放,研究气化飞灰的预热特性、预热后的高温气固混合燃料的燃烧特性和NO_x排放特性。结果表明,预热燃烧锅炉可以燃用挥发分3%的气化飞灰,锅炉运行稳定,气化飞灰燃烧效率可达98%以上,NO_x原始排放浓度最低可达261.94 mg/m~3,经脱硝处理能达到超低排放。预热燃烧锅炉实现了气化飞灰的高效低氮燃烧,证明了预热燃烧技术在超低挥发分燃料处理方面的可行性和技术先进性。  相似文献   

2.
针对贫煤难稳燃,NO_x生成量大的突出问题,采用热重分析法结合卧式炉燃烧研究,通过Testo 350在线烟气分析仪考察了贫煤及其与生物质等直接混烧的燃烧特性和NO_x排放特性。结果表明:贫氧气氛下燃烧,氧浓度对焦炭氮的影响明显大于对挥发分氮的影响,氧浓度低于21%时,NO_x转化率由27.4%降低至15%左右;在1 100℃以下,温度升高促进燃料氮与挥发分同时释放,还原性气氛下含N中间体更容易向N_2转化,NO_x排放浓度及转化率降低。生物质可以促进燃烧,减少NO_x排放,但容易出现挥发分与焦炭分段燃烧现象,影响焦炭稳定燃烧。为此,以烟煤煤矸石为调节燃料,将贫煤、玉米芯、煤矸石三者混配,配比为80∶5∶15(质量比)时,着火温度较贫煤单独燃烧降低100℃左右,最大失重峰温由670℃降低至600℃;氮转化率由28.5%下降至16.7%。  相似文献   

3.
运用煤燃烧及NO_x生成的详细化学反应机理,通过搭建一维化学反应器网络(1D-CRN),对一个新型双流化床(DCFB)内燃料型N转化为NO_x的基元化学反应进行了敏感性分析并讨论了反应温度、过量空气系数以及一、二次风配比对燃料型NO_x生成的影响。研究发现,在相同条件下,循环流化床炉膛出口的NO_x排放值为224.48mg·m~(-3),而双流化床炉膛出口的NO_x排放值为97.29 mg·m~(-3),双流化床对于燃料型NO_x的减排幅度达到了56.66%。此外,促进NO_x生成的基元反应主要有R398(NH_2+O→HNO+H)、R1-N-1(N-Vol→NH_3+HCN)、R569(NCO+O_2NO+CO_2)、R17(H+O_2O+OH)等反应,而抑制NO_x生成的反应包括R411(NH_2+NON_2+H_2O)、R412(NH_2+NONNH+OH)、R570(NCO+NON_2O+CO)、R571(NCO+NON_2+CO_2)以及R5(Char+NO→Char+N_2+O_2)和R6(Soot+NO→n Soot+N_2+CO)等反应。这说明反应区域氧气浓度是影响NO_x生成的关键,低氧浓度可抑制燃料N向NO_x转化。另外,NO_x生成值随着反应温度的升高而降低,但随着过量空气系数和一次风所占比例的增大而增加。  相似文献   

4.
在富氧富水蒸气条件下,研究了富含氮的燃料白酒糟在流化床中燃烧时NO_x的排放特性。结果表明,在过量空气系数1.2条件下,水蒸气和O_2对NO_x的生成相互影响。当O_2浓度低于约35%时,向燃烧气中加入水蒸气能抑制NO_x生成,使烟气中NO_x的排放浓度和燃料N转化为NO_x的转化率降低;而当氧气浓度高于约35%时,加入水蒸气促进了NO_x生成,表明提高氧气浓度使得氧化作用起到主导地位。NO_x生成量随温度的升高先增加后减少,在较高氧气浓度下,NO_x生成量随温度升高而降低的转折点发生在较低的温度;燃烧气氛中添加水蒸气延迟了转折点的发生,使转折点发生在较高温度。  相似文献   

5.
随着"煤改气"的逐步推进,天然气锅炉应用越来越多,在保证效率的同时,锅炉的NO_x排放标准也越来越严格。以应用于锅炉的柔和燃烧器为研究对象,通过实验和化学反应模型的方法研究了柔和燃烧器在不同换热情况(石英玻璃罩和水套)下NO_x排放特性,并对不同工况进行了分析。结果表明,燃烧器散热越大,越有利于降低NO_x排放,当量比小于0.9时,NO_x排放低于30 mg/Nm~3,可以直接满足现有锅炉排放需求。模拟结果显示相对NO_x随散热量呈负相关变化趋势。相对NO_x随当量比的变化曲线随着散热量的增加而变得更加平缓,说明散热量增大会减弱当量比对相对NO_x的影响,使其在不同当量比下的下降程度相当。分析其原因是散热量增大,燃烧室内温度整体下降,烟气在高温区的停留时间减小,热力型NO_x的影响在减弱,快速型NO_x及N_2O型NO_x对整体NO_x的贡献在增强。  相似文献   

6.
预热燃烧具有燃料适应性广、负荷调节快及污染物排放低等优势,是一种新型的高效清洁燃烧技术。其中,煤粉流态化预热后产生的预热煤气既能反映预热过程中煤粉的改性程度,又对后续燃烧效率及NOx排放有重要影响。因此,煤粉流态化预热后产生的预热煤气是控制燃料转化及低NOx排放的关键。基于煤粉流态化预热转化过程,在温度可控的千瓦级煤粉预热燃烧试验平台上,研究了预热温度、循环流化床空气当量比、煤粉粒径对预热煤气生成特性的影响。结果表明,850~950℃,随预热温度升高,热解反应及气化反应增强,煤气中CO2体积分数下降,CO体积分数增加,H2体积分数先增加后不变,CH4体积分数则先增加后减小,煤气品质改善,热值由2.86 MJ/m3增至3.61 MJ/m3;循环流化床空气当量比从0.3增至0.5时,氧化反应增强,煤气中CO2体积分数增加,CO、H2、CH4体积分数降低,煤气热值由3.44 ...  相似文献   

7.
空气分级燃烧是广泛采用的煤粉低氮燃烧技术,使用数值模拟方法对其进行模拟预测,有助于燃烧设备的改进并优化燃烧,实现在燃烧中进一步降低污染物排放。空气分级燃烧数值模拟中对还原区的准确模拟是预测氮氧化物排放、硫化氢高温腐蚀等的基础。笔者旨在提出一种合理预测煤粉空气分级燃烧还原性气氛的数值模拟方案,并将其应用于实际锅炉的模拟,并探讨了还原性气氛预测准确性对氮氧化物排放、焦炭燃烧等的影响。主要内容包括:①对煤粉空气分级燃烧过程进行原理分析,提出数值模型开发及其应用的研究思路,即是通过小型电加热沉降炉模拟实际锅炉分级燃烧温度和组分浓度场,测量组分、焦炭转化等参数用于模型开发和验证,最后将开发的模型嵌入商用数值模拟平台,实现分级燃烧全过程模拟。基于此,搭建了能够反映实际锅炉空气分级燃烧温度场和组分浓度场特性的电加热沉降炉试验平台,并通过在线称重给煤速率、气体浓度组分测量,对试验系统的稳定性进行了验证。②设计不同工况的空气分级燃烧试验,并获取沿程CO、H_2、焦炭转化率等关键数据,基于数值模拟的动力学优化方法获取空气分级燃烧状态下还原区焦炭的气化反应动力学参数。通过开发用户自定义函数的方式在Fluent平台上实现了焦炭气化以及还原性气氛的模拟预测,并将其应用于600 MWe超临界墙式对冲炉分级燃烧的数值模拟。③分析比较了在模拟中不考虑气化和考虑气化时对炉内温度、还原区气氛、氮氧化物的分布和焦炭转化的影响。结果表明,文中提出的空气分级燃烧数值模拟方案能实现对实际锅炉空气分级燃烧特别是还原区的合理预测;在模拟中不考虑焦炭气化将导致还原性气体浓度明显偏低,导致颗粒燃尽推迟,炉膛出口氮氧化物浓度偏高。  相似文献   

8.
循环流化床预热燃烧过程中,预热燃料在下行燃烧室的燃烧过程至关重要。为了研究预热燃料在下行燃烧室中的流动和燃烧特性,采用计算流体力学软件Fluent,结合试验手段,对不同二次风喷口配风方式下,预热燃料在下行燃烧室的燃烧过程进行试验及数值模拟,对比了不同配风方式下,流动特性、温度特性、组分浓度分布特性以及氮氧化物排放特性的差异。结果表明,预热燃料在下行燃烧室的燃烧过程中,二次风会卷吸烟气在下行燃烧室上部产生回流,稀释反应物,在中心喷口配风时回流区域更大。不同配风方式下,下行燃烧室中的温度分布不同。环形喷口配风时下行燃烧室中的温度峰值为1 459 K,而中心喷口配风时下行燃烧室的温度峰值为1 555 K,同时环形喷口配风时下行燃烧室的高温区域较小,温度分布更加均匀。环形喷口配风时,预热燃料和二次风的混合更加充分,高温煤气和空气的反应更加强烈,有助于燃料的着火及升温。而中心喷口配风时下行燃烧室顶部的CO和H_2等还原性气体浓度较高,有助于还原NO_x。同时较高的温度促进了气化反应,生成更多的CO和H_2,在燃尽风喷入前的区域形成还原性气氛,有助于进一步还原NO_x。二次风中心喷口配风时,更多的氮氧化物被还原,尾部烟气中的NO_x排放浓度为107×10~(-6),二次风环形喷口配风时,尾部烟气中的NO_x排放浓度为121×10~(-6)。  相似文献   

9.
抑制燃气燃烧装置产生的NO_x对保护大气环境是至关重要的一个方面。通过采用低NO_x的燃烧技术,改变燃烧条件抑制氮氧化物生成,从而降低NO_x的排放。影响燃烧过程中NO_x生成的主要因素是燃烧温度、烟气在高温区的停留时间、烟气中各种组分的浓度以及混合程度,对其进行了探讨。由于燃烧方法和燃烧条件对NO_x的生成有较大影响,因此可以通过改进燃烧技术来降低NO_x。选择新型低NO_x的燃烧器需考虑单台热负荷、燃料性质、空气供给量、温度、炉膛的高度,以及炉管与燃烧器的距离等影响因素,低氮燃烧器在加热炉脱硝改造中的应用取得了较好的效果。  相似文献   

10.
高浓度煤粉燃烧器能稳定燃烧和显著降低NO_x排放,是一种经济环保的燃烧技术,其一次风速对炉内着火延迟、煤粉燃烧稳定性以及NO_x排放量都有重要的影响。为了确定适合新型高浓度煤粉预燃式低氮燃烧器的一次风速,为燃烧器的现场试验和实际运行提供指导依据,采用ANSYS Fluent软件模拟计算了一次风速对煤粉燃烧稳定性和NO_x排放的影响。先进行网格无关性检验,并用一台25 t/h全尺寸煤粉工业锅炉进行试验,验证了模型的准确性。数值模拟计算结果表明:新型高浓度煤粉预燃式低氮燃烧器可在预燃室和炉膛内形成2个回流区,预燃室内的回流区保证煤粉稳定燃烧,炉膛内的回流区降低NO_x。一次风速过低时,一、二次风的后期混合减弱,煤粉燃烧不稳定,NO_x排放量略微升高;一次风速过高时,二次风与煤粉的混合被削弱,煤粉燃烧同样不稳定,且焦炭转化率明显下降,NO_x排放大幅增加;一次风速从17 m/s增加到20 m/s,出口截面NO_x浓度提高约10%;适当的一次风速不仅能稳定煤粉着火和燃烧,还能实现NO_x低排放。试验研究燃烧器的最佳一次风速在14~17 m/s。  相似文献   

11.
天然气燃烧过程主要污染物是NO和NO_2。针对部分燃气锅炉NO_2排放较高的情况,开展了中试实验和数值模拟,研究天然气燃烧过程NO_2生成规律。结果表明当锅炉采用"燃烧器分级燃烧+烟气再循环"的低氮燃烧策略时,如果燃烧器的伴流风与燃料的混合被推迟,则NO_2的生成量较大,最高超过总NO_x生成量的50%,空气和燃料充分混合的条件下NO_2生成量较少。NO_2在热燃烧产物与冷空气碰撞的交界面上大量生成,NO_2生成的温度窗口是800~900 K。NO_2主要通过NO与HO_2的反应生成,NO_2分解后又生成NO,NO_2的生成不会显著影响燃烧过程总NO_x的排放。  相似文献   

12.
<正> 前言燃料在空气中燃烧的过程中会产生氮的氧化物——NO、NO_2、N_2O、N_2O_3、N_2O_4、N_2O_5等。在各类工业炉中燃烧煤、石油类及天然气等燃料所生成的氮氧化物,几乎全是NO和NO_2,一般写作“NO_x”。锅炉及各类工业炉排放的烟气中的NO,逐步与大气中的氧结合成NO_2,其反应速度是非常缓慢的。但是,NO_2一旦形成,便在太阳光照射下与碳氢化合物和臭氧反应产  相似文献   

13.
为了研究空气分级低氮燃烧技术对煤粉工业锅炉NO_x初始排放浓度的影响规律,针对煤科院40 t/h煤粉工业锅炉采用数值模拟的方法探讨了空气分级深度对锅炉燃烧及NO_x初始排放浓度的影响规律,并通过工程试验验证了模拟结果的准确性。研究结果表明:随着三次风比例由0增至50%,双锥燃烧器出口平均温度由980 K上升至1 530 K,且温度分布更加均匀;双锥燃烧器出口气流流速降低约10 m/s;锅炉NO_x初始排放浓度由空气不分级工况下的697 mg/m~3降至三次风30%工况下的424 mg/m~3,降幅约39%。工程试验表明,三次风比例为30%时,NO_x初始排放浓度为409 mg/m~3,与数值模拟结果相差小于5%,数值模拟较好地预测了锅炉燃烧及NO_x排放情况。空气深度分级低氮燃烧技术可有效降低煤粉工业锅炉NO_x初始排放浓度。  相似文献   

14.
流化床燃烧石油焦N_2O排放特性   总被引:1,自引:1,他引:0       下载免费PDF全文
通过在一小型流化床试验台上进行石油焦的燃烧试验 ,阐述了N2 O和NO形成与分解机理 ,模拟研究了N2 O的排放特性 .采用不同程度脱去挥发分的石油焦颗粒 ,研究脱挥发分的程度对N2 O形成的影响 ,脱挥发分的温度越高 ,即脱挥发分的程度越高 ,石油焦氮形成N2 O的量越少 ,这表明石油焦挥发分氮形成N2 O量高于相应石油焦焦炭氮燃烧产生的N2 O量 .燃料燃烧过程中 ,NO形成比较均匀 ,而N2 O形成比较复杂 ,燃料氮向NO的转化率随脱挥发分温度升高而增加 ,而向N2 O的转化率则有一临界脱挥发分温度点 .  相似文献   

15.
为考察不同燃料在小区域供暖炉具中的NO_x排放特性,分别以原煤和洁净型煤为燃料进行了燃烧试验;结果表明,相比燃用原煤,洁净型煤可以降低NO_x排放33%,实现炉内降氮的目的;单个洁净型煤在层燃炉具燃烧中经历了动力燃烧、过渡燃烧、扩散燃烧、燃尽等4个过程,在燃烧中通过贫氧气氛抑制、还原性气体和焦炭还原等过程降低NO_x,具有自还原NO_x的作用。  相似文献   

16.
基于循环流化床预热的燃烧系统是一种新型的清洁燃烧技术,其流态化预热后煤气中CO/CO_2比值对后续燃烧和排放影响较大,研究正确反映CO/CO_2比值的焦炭燃烧模型有助于进一步了解该流态化预热过程。笔者基于燃料流态化预热转化过程,研究典型的预热空气富氧气氛(O_2/N2)、富氧气氛(O_2/CO_2)以及燃料种类变化对预热后气态组分中CO/CO_2生成转化特性的影响,分析现有焦炭燃烧模型与流态化预热过程的匹配程度。试验数据和模型预测对比分析表明,空气富氧气氛下,氧气浓度从21%增至28.2%的过程中,神木半焦流态化预热过程产生的预热气体中CO_2占比减少,CO占比增多,CO/CO_2比值从0.81增至1.45;神木烟煤在该气氛预热时,各参数与神木半焦呈现同样的变化趋势,且随氧气浓度从21.0%增至24.4%,CO/CO_2比值从0.51增至0.76。富氧气氛时神木半焦预热产生的CO与神木烟煤相比产量更高,CO/CO_2比值随氧气浓度增大而增大,但与空气富氧气氛下相比递增幅度较小。神木烟煤预热气体组分CO/CO_2的试验数据与Tognotti提出的焦炭燃烧模型预测值吻合度最高,富氧气氛下试验与预测结果误差在9%以内。  相似文献   

17.
矿物质对煤焦燃烧过程中NO释放规律的影响   总被引:5,自引:4,他引:5       下载免费PDF全文
赵宗彬  李文  李保庆 《化工学报》2003,54(1):100-106
在石英固定床反应器上研究了煤焦燃烧过程中矿物质在不同燃烧条件下对NO释放规律的影响.结果表明:煤中的矿物质对燃料氮转化为NO有显著的影响,其影响与矿物质的组成和燃烧条件有关,碱金属Na、K催化半焦氮的氧化在较低的温度下进行并降低半焦氮对于NO的转化率,而Ca、Fe在低温燃烧条件下增加NO的排放,高温时使NO的排放降低;矿物质惰质组分的存在使NO的排放增加;随着煤阶的升高,半焦的反应性降低,燃料氮对于NO的转化率增大;燃料氮的转化率随燃烧温度的升高而增加,但达到极大值后又趋于降低;矿物质对于NO排放量的影响决定于矿物质对于半焦氮的氧化以及半焦还原NO反应催化作用的相对大小.  相似文献   

18.
无焰燃烧是近年来广受关注的新型高效清洁燃烧技术之一,具有容积式低反应速率燃烧区和典型中低温燃烧特性,需耦合详细反应机理并考虑湍流与化学反应交互,以提高无焰燃烧及其NO生成数值模拟精度。基于动态自适应反应机理对煤粉无焰燃烧和NO生成特性进行了高保真数值模拟研究。通过采用动态自适应机理简化算法,模拟过程实时对自主发展的含氮骨架机理进行当地简化。评估发现,相较于单纯采用骨架机理模拟,采用动态自适应反应可在不牺牲计算精度的条件下获得约3倍的计算加速,且对炉内NO生成的预测精度显著优于传统NO后处理模拟方法。基于经试验验证的模拟结果,还获得了HCN和NH_3等典型含氮前驱体的炉内分布,并进一步分析了煤粉无焰燃烧燃料氮转化路径、炉内活跃组分和活跃反应等氮转化关键信息。结果表明,煤粉无焰燃烧NO生成主要取决于NH_3、HCN和N_2O中间体,而NCO和HNO是较为关键的中间组分。HCN中间体主要通过HNCO/CN和NCO路径生成NO。NH_3中间体由HNCO生成,并进一步转化为NH_2和HNO,最终生成NO。N_2O路径主要参与NO还原,对NO生成贡献较低。CH_3CN也是生成NO的重要中间组分,可通过NCO路径生成NO。  相似文献   

19.
在干法水泥生产技术中,分解炉内燃料燃烧和原料分解对水泥质量和污染物排放有重要影响。与燃料直接注入分解炉燃烧相比,燃料经循环流化床预热处理后再注入分解炉燃烧不仅可以提高分解炉内燃烧性能,减少有害气体排放,同时预热处理也可以增加水泥分解炉的燃料适应性。主要研究煤与生物质混合燃料在进入分解炉前由循环流化床预热后的预热特性,即不同因素对固相预热燃料和煤气的影响。研究表明:氧碳比(单位时间内O2与C的摩尔质量比)的增大会导致预热炉内反应和颗粒碰撞更为剧烈,导致预热燃料粒径减小;同时氧碳比增加会使煤和稻壳耦合预热产生的焦炭灰分增加,其他组分减少;外热源升温可明显提升CO、CH4、H2等煤气有效燃烧组分的生成,提高固相燃料中各组分的转化率。  相似文献   

20.
煤泥灰含量大、颗粒细、热值低,煤泥的高效清洁燃烧是固废资源化利用的重要方式之一。采用煤粉流态化预热耦合循环流化床燃烧技术,在30 kW预热燃烧综合评价试验台上,控制煤泥掺混比、给料量、还原区当量比、二/三次风比例及过剩空气系数等参数不变,并借助煤气分析仪和烟气分析仪等测量仪器,开展了循环流化床烟煤掺混煤泥的预热燃烧试验。结果表明,循环流化床预热燃烧系统运行稳定可靠,预热温度800℃以上,预热燃料可持续稳定输送到循环流化床中;烟煤掺混高灰分的煤泥,循环灰量增加,循环流化床燃烧室温差小,温度均匀;预热空气当量比由0.36增至0.51时,预热器内温度增加,预热煤气中CO2、HCN体积分数增加,CO、H2、CH4及NH3体积分数降低,煤气热值由2.02 MJ/m3降至1.49 MJ/m3;且随着预热空气当量比的增加,循环流化床燃烧室沿程NO体积分数增加,CO体积分数底部高、上部低,NOx排放量由172 mg/m3增至24...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号