共查询到17条相似文献,搜索用时 78 毫秒
1.
目的研究无需进行复杂的图像预处理和人工特征提取,就能提高光学遥感图像的船只检测准确率和实现船只类型精细分类。方法对输入的检测图像,采用选择性搜索的方法产生船只候选区域,用已经标记好的训练样本对卷积神经网络进行监督训练,得到网络参数,然后使用经过监督训练的卷积神经网络提取抽象特征,并对候选区域进行分类,根据船只候选区域的分类概率同时确定船只的位置以及类型。结果与现有的2种检测方法进行对比,实验结果表明卷积神经网络能有效提高船只检测准确率,平均检测准确率达到了93.3%。结论该检测方法无需进行复杂的预处理,能同时对船只进行检测和分类,并能有效提高船只检测准确率。 相似文献
2.
目的 提取样本图像颜色直方图特征对卷积神经网络进行训练,达到快速、高准确率检测图像颜色缺陷的目的.方法 将标准图像从RGB颜色空间转换至HSV颜色空间,通过改变图像H,S,V三分量值获取训练样本和测试样本;在HSV颜色空间中非均匀量化图像的颜色直方图,得到所有训练样本和测试样本的颜色直方图特征;利用样本图像颜色直方图特征训练卷积神经网络,然后对测试样本进行检测,研究检测的速度、准确率,并将该检测方法与逐像素、超像素、BP神经网络和支持向量机方法进行对比.结果 对于图片尺寸为512×512的彩色图像,卷积神经网络检测单幅图片的平均检测时间约为57.66 ms,训练样本图像为50000张时,卷积神经网络方法对10000张测试样本进行检测的准确率为99.77%.结论 卷积神经网络方法在保证高准确率的前提下大幅提高检测精度,对于印刷品色差缺陷在线检测具有良好的应用价值. 相似文献
3.
针对传统布匹瑕疵检测方法无法适用于尺度变化大、面积占比小的瑕疵特征,提出一种基于可变形密集卷积神经网络模型。为了关注到图像中距离较远的特征信息,并避免捕获纹理信息,采用可变形卷积来增强特征的语义表达能力。通过在卷积层中设置卷积像素相对于中心像素各自的x,y方向偏移量,并利用反向传播训练偏移量以增加感受野的变形适应性。同时,采用密集连接的方式以保持模型不遗漏边缘瑕疵信息。最后,根据瑕疵类别预测和位置边框回归实现瑕疵的分类和定位检测。实验结果表明:该模型的平均检测精度和单类目标检测精度标准差分别为93.53%,2.5139,相比于其他方法更具有竞争力。 相似文献
4.
《中国计量学院学报》2017,(2):226-233
绘画作品的数字化对有效使用绘画资源具有重要意义,传统图像分类方法并未考虑绘画作品主观特性,且大部分特征需要人工提取,存在细节特征丢失等问题.在此提出基于卷积神经网络的绘画图像分类方法,分析了卷积核大小、卷积神经网络结构宽度、训练样本数量对分类结果的影响,以优化网络结构和参数.实验结果表明,该方法对绘画图像分类的有效性,在不同绘画图像数据集的分类实验上也得到了较好的分类结果. 相似文献
5.
目的 解决超分辨率图像重构模型中存在的功能单元之间关联性差,图像色度特征提取完整性不强、超分辨率重构失真控制和采样过程残差控制偏弱等问题。方法 通过在卷积神经网络模型引入双激活函数,提高模型中各功能单元之间的兼容连接性;引用密集连接卷积神经网络构建超分辨率失真控制单元,分别实现对4个色度分量进行卷积补偿运算;将残差插值函数应用于上采样单元中,使用深度反投影网络规则实现超分辨率色度特征插值运算。结果 设计的模型集联了内部多个卷积核,实现了超分辨率色度失真补偿,使用了统一的处理权值,确保了整个模型内部组成单元的有机融合。结论 相关实验结果验证了本文图像重构模型具有良好可靠性、稳定性和高效性。 相似文献
6.
目的:研究分析疑似及确诊新冠肺炎患者临床及胸部CT影像特点.方法:研究对象为我院2020年1月-2020年12月收治的30例疑似及确诊新冠肺炎患者.其中与《新型冠状病毒肺炎影像诊断指南(2020年第二版简版)》中规定的新冠肺炎诊断标准相符合,但2次以上核酸检测结果为阴性的疑似患者共21例为对照组,同时与以上新冠肺炎诊断... 相似文献
7.
为了提高工业CT缺陷检测精度,本文提出一种基于GA-BP神经网络的CT缺陷检测方法。采用遗传算法,对BP神经网络的权值和阈值进行优化,建立基于GA-BP神经网络的工业CT缺陷检测模型;采用工业CT图片组成实验数据进行仿真分析,并与卷积神经网络和支持向量机的监测效果进行对比。结果表明:该方法可使GA-BP神经网络模型误检测次数更少,精度高达96.67%,且效果更好,具有较好的可行性和实用性。 相似文献
8.
针对实际生产中不同种类轮毂的混流生产问题,提出了一种基于环形特征的卷积神经网络轮毂识别算法。将直角坐标下的环形轮毂映射到极坐标中,归一化为标准形式的矩形,提取轮毂图像的环形特征信息,减少冗余特征产生的影响;设计了一种改进的VGG网络架构,利用深度可分离卷积打破输出通道维度与卷积核大小的联系,在不损失网络性能的同时降低了计算量,能够在实际生产中轮毂识别任务在有限的算力情况下实时进行计算;从有效性和实时性两个方面对轮毂识别算法进行评估,且通过Inception V3、SVM、KNN等模型的对比实验,验证了该算法可以实时地对轮毂自适应分类。实验表明: 该方法对轮毂图像的处理精度达到99%以上,单幅图像平均处理时间降低至11.78ms。 相似文献
9.
生物式水质监测通常是先通过提取水生物在不同环境下的应激反应特征,再进行特征分类,从而识别水质。针对水质监测问题,提出一种使用卷积神经网络(CNN)的方法。鱼类运动轨迹是当前所有文献使用的多种水质分类特征的综合性表现,是生物式水质分类的重要依据。使用Mask-RCNN的图像分割方法,求取鱼体的质心坐标,并绘制出一定时间段内鱼体的运动轨迹图像,制作正常与异常水质下两种轨迹图像数据集。融合Inception-v3网络作为数据集的特征预处理部分,重新建立卷积神经网络对Inception-v3网络提取的特征进行分类。通过设置多组平行实验,在不同的水质环境中对正常水质与异常水质进行分类。结果表明,卷积神经网络模型的水质识别率为99.38%,完全达到水质识别的要求。 相似文献
10.
3D打印过程中激光点温度对成型制品的精度和质量会产生直接影响。针对传统温度检测装置在激光点温度检测方面无法达到高检测率、低误差率的工业需求,文章提出一种基于卷积神经网络对激光点温度进行检测估计方法。采用深度学习方法,对收集到的激光温度训练样本运用卷积神经网络的方法进行模型训练,利用训练结果对测试集进行预测,估计出测试激光图像的激光温度。此外在传统卷积神经网络的基础上进行了改进,验证结果表明改进的卷积神经网络能够对激光点等温线进行更为准确的检测估计。 相似文献
11.
Jieren Cheng Yifu Liu Xiangyan Tang Victor S. Sheng Mengyang Li Junqi Li 《计算机、材料和连续体(英文)》2020,62(3):1317-1333
Distributed Denial-of-Service (DDoS) has caused great damage to the network
in the big data environment. Existing methods are characterized by low computational
efficiency, high false alarm rate and high false alarm rate. In this paper, we propose a
DDoS attack detection method based on network flow grayscale matrix feature via multiscale convolutional neural network (CNN). According to the different characteristics of
the attack flow and the normal flow in the IP protocol, the seven-tuple is defined to
describe the network flow characteristics and converted into a grayscale feature by binary.
Based on the network flow grayscale matrix feature (GMF), the convolution kernel of
different spatial scales is used to improve the accuracy of feature segmentation, global
features and local features of the network flow are extracted. A DDoS attack classifier
based on multi-scale convolution neural network is constructed. Experiments show that
compared with correlation methods, this method can improve the robustness of the
classifier, reduce the false alarm rate and the missing alarm rate. 相似文献
12.
Shangjun Luo Junwei Luo Wei Lu Yanmei Fang Jinhua Zeng Shaopei Shi Yue Zhang 《计算机、材料和连续体(英文)》2021,66(1):647-660
The estimation of image resampling factors is an important problem in
image forensics. Among all the resampling factor estimation methods, spectrumbased methods are one of the most widely used methods and have attracted a lot
of research interest. However, because of inherent ambiguity, spectrum-based
methods fail to discriminate upscale and downscale operations without any prior
information. In general, the application of resampling leaves detectable traces in
both spatial domain and frequency domain of a resampled image. Firstly, the
resampling process will introduce correlations between neighboring pixels. In this
case, a set of periodic pixels that are correlated to their neighbors can be found in
a resampled image. Secondly, the resampled image has distinct and strong peaks
on spectrum while the spectrum of original image has no clear peaks. Hence, in
this paper, we propose a dual-stream convolutional neural network for image
resampling factors estimation. One of the two streams is gray stream whose purpose is to extract resampling traces features directly from the rescaled images. The
other is frequency stream that discovers the differences of spectrum between
rescaled and original images. The features from two streams are then fused to construct a feature representation including the resampling traces left in spatial and
frequency domain, which is later fed into softmax layer for resampling factor estimation. Experimental results show that the proposed method is effective on
resampling factor estimation and outperforms some CNN-based methods. 相似文献
13.
With the development of artificial intelligence-related technologies such as deep learning, various organizations, including the government, are making various efforts to generate and manage big data for use in artificial intelligence. However, it is difficult to acquire big data due to various social problems and restrictions such as personal information leakage. There are many problems in introducing technology in fields that do not have enough training data necessary to apply deep learning technology. Therefore, this study proposes a mixed contour data augmentation technique, which is a data augmentation technique using contour images, to solve a problem caused by a lack of data. ResNet, a famous convolutional neural network (CNN) architecture, and CIFAR-10, a benchmark data set, are used for experimental performance evaluation to prove the superiority of the proposed method. And to prove that high performance improvement can be achieved even with a small training dataset, the ratio of the training dataset was divided into 70%, 50%, and 30% for comparative analysis. As a result of applying the mixed contour data augmentation technique, it was possible to achieve a classification accuracy improvement of up to 4.64% and high accuracy even with a small amount of data set. In addition, it is expected that the mixed contour data augmentation technique can be applied in various fields by proving the excellence of the proposed data augmentation technique using benchmark datasets. 相似文献
14.
针对传统的滚动轴承故障诊断方法依赖人工特征提取和专家经验,难以自适应提取强噪声信号微弱故障特征的问题,提出一种直方图均衡化和卷积神经网络(CNN)相结合的智能诊断方法。首先,将传感器采集到的一维振动信号通过横向插值法转换为便于模型识别的二维振动图像,利用直方图均衡化技术拉伸像素之间灰度值差别的动态范围,突出纹理细节和对比度,以增强周期性故障特征;然后构建深层CNN模型,采用优化技术降低模型参数量,逐层学习监测数据与故障状态之间的复杂映射关系。实验结果表明该方法具有高达99%以上的准确率,对不同负载下的故障信号仍具有较高的识别精度和泛化能力。 相似文献
15.
目的 为了改善传统机器检测印刷产品缺陷存在误费率高的不足。方法 提出以卷积神经网络为控制核心的印刷品缺陷检测系统。设计可在实际检测中应用的卷积神经网络,设计在线印刷质量检测系统的硬件结构。结果 对结构相同而训练次数、学习率不同的卷积神经网络进行了缺陷检测的性能对比,验证了该卷积神经网络在学习率小于0.01时,可以获得较好的识别效果;在学习率大于0.05时,网络不容易收敛。网络训练次数越多,精度越高,相应的训练时间也较长。在满足快速性和精确度的条件下,确定了适应某印刷品的缺陷检验网络训练次数为50,学习率为0.005,此时的识别率为90%。结论 经过实验证明,该检测系统具有良好的缺陷识别能力,缺陷类型的分类准确率较高。该系统具有一定的实用价值。 相似文献
16.
目的 针对目前印刷套准识别方法依赖于经验人工设计特征提取的问题,提出一种不需要人工提取图像特征的卷积神经网络模型,实现印刷套准状态的识别.方法 采用图像增强技术实现不均衡训练集的均衡化,增加训练集图像的数量,提高模型的识别准确率.设计基于AlexNet网络结构的印刷套准识别模型的结构参数,分析批处理样本数量和基础学习率对模型性能的影响规律.结果 文中方法获得的总印刷套准识别准确率为0.9860,召回率为1.0000,分类准确率几何平均数为0.9869.结论 文中方法能自动提取图像特征,不依赖于人工设计的特征提取方法.在构造的数据集上,文中方法的分类性能优于实验中的支持向量机方法. 相似文献
17.
目的针对传统无纺布缺陷分类检测中人工依赖性强、效率低等问题,提出一种能够满足工厂要求的卷积神经网络分类检测方法。方法首先建立包括脏点、褶皱、断裂、缺纱和无缺陷等5种共计7万张无纺布图像样本库,其次构造一个具有不同神经元个数的卷积层和池化层的神经网络,然后采用反向传播算法逐层更新权值,通过梯度下降法最小化损失函数,最后利用Softmax分类器实现无纺布的缺陷分类检测。结果构建了12层的卷积神经网络,通过2万张样本进行测试实验,无缺陷样本准确率可以达到100%,缺陷样本分类准确率均在95%以上,检测时间在35 ms以内。结论该方法能够满足工业生产线中对于无纺布缺陷实时分类检测的要求。 相似文献