首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of partially stabilized zirconia (PSZ) on the mechanical properties of the hydroxyapatite-high density polyethylene composites was studied by investigating the effect of hydroxyapatite and the simultaneous effect of hydroxyapatite and PSZ volume fractions on fracture strength, modulus of elasticity, and absorbed energy in the composite samples. The results showed a decrease in fracture strength, and absorbed energy with an increase in the volume fraction of hydroxyapatite content in the hydroxyapatite-polyethylene samples. Partial replacement of hydroxyapatite with PSZ particles was beneficial in the improvement of both the fracture strength and failure energy values in the composite samples. A transition from ductile to brittle behavior was observed as the volume fraction of ceramic filler particles increased in the samples.  相似文献   

2.
Effect of aggregate shape on the mechanical properties of a simple concrete   总被引:1,自引:0,他引:1  
The influence of aggregate shape on the fracture energy, tensile strength and elasticity modulus in concrete is considered. For this purpose, eight simple cement-based composites were designed, manufactured and tested, with two purposes: to provide experimental data that can throw some light on this involved problem and help in the design of future cement-based composites, and supply information that can be used as a benchmark for checking numerical models of concrete failure, as this simple composite is amenable to being modelled quite easily. Thirty-six notched beams were tested and values of the fracture energy and elasticity modulus were recorded. The tensile strength was measured from indirect standard tensile tests. Comparison with available experimental data is also included and discussed. Fracture was modelled using a cohesive crack with a bilinear softening function; data of the softening function inferred from the experimental measurements are also provided and discussed.  相似文献   

3.
A bilinear cohesive zone model (CZM) is employed in conjunction with a viscoelastic bulk (background) material to investigate fracture behavior of asphalt concrete. An attractive feature of the bilinear CZM is a potential reduction of artificial compliance inherent in the intrinsic CZM. In this study, finite material strength and cohesive fracture energy, which are cohesive parameters, are obtained from laboratory experiments. Finite element implementation of the CZM is accomplished by means of a user-subroutine which is employed in a commercial finite element code (e.g., UEL in ABAQUS). The cohesive parameters are calibrated by simulation of mode I disk-shaped compact tension results. The ability to simulate mixed-mode fracture is demonstrated. The single-edge notched beam test is simulated where cohesive elements are inserted over an area to allow cracks to propagate in any general direction. The predicted mixed-mode crack trajectory is found to be in close agreement with experimental results. Furthermore, various aspects of CZMs and fracture behavior in asphalt concrete are discussed including: compliance, convergence, and energy balance.  相似文献   

4.
The influence of the aggregate size on the fracture energy, tensile strength and elasticity modulus in different types of concrete are analyzed. For this purpose, nine simple cement-based composites have been designed, manufactured and tested, with one objective to provide experimental results that can be used as a benchmark for checking numerical models of concrete fracture, as this simple composite (a matrix, spherical aggregates of the same radius, and two types of matrix-aggregate interface) is amenable to modelling. All in all, 44 specimens were tested. From notched beam tests, values of the fracture energy and modulus of elasticity were obtained. The tensile stress was deduced from indirect standard tensile test. Data for bilinear softening functions extracted from the experimental measurements are also provided. Comparison with available experimental data is also included and discussed.  相似文献   

5.
The failure behavior and morphology of a carbon–carbon composite (C–C composite) manufactured by isothermal chemical vapor infiltration was studied by three-point bending tests, polarized light microscope and scanning electron microscope, respectively. The C–C composite was reinforced by PAN-based carbon fiber aligned in only one direction. Flexural strength and modulus of the composite were 200.9 MPa and 50.5 GPa, respectively. Failure behavior of the unidirectional C–C composite can be described as three stages including brittle fracture behavior at beginning, quasi-ductile behavior finally, and fluctuation behavior between them. Two main kinds of cracks, namely cracks parallel and perpendicular to loading direction alternately resulted in deformation evolution of the composite. The strength of interfacial bonding and cracks orientation played key roles to failure behavior of C–C composite.  相似文献   

6.
High energy water jets are established in processing brittle, inhomogeneous materials like rocks and concrete. Despite their wide field of application, the failure mechanisms of these materials, especially the influence of inclusions, are not well known. This work examines the influence of grain inclusions on the fracture behaviour of a multiphase brittle material exposed to high energy water jet processing. The behaviour of the specimens is detected by mass removal measurements, microscopical observations and the mercury penetration technique. It is found that the failure is based on microcrack growth due to hydrostatic pressure. The fracture mechanical behaviour of the reference material changes considerably with the addition of aggregates. The addition of grains leads to a reduction of the threshold tool energy for the start of mass removal. On the other hand, the presence of inclusions permits a more reduced and controlled removal progress. The interfaces between matrix and grains are the preferred locations for crack growth and also for crack branching. The inclusions act as crack arresters and crack branchers. In the case of cracks growing through the grains, a higher amount of fracture energy is absorbed and the fracture performance is weakened.Feodor-Lynen Fellowship holder of the Alexander von Humboldt Foundation, Germany.  相似文献   

7.
The interfacial cracking, or debonding, of a composite has been studied both in tension and interlaminar shear, the fracture force being applied parallel to the interfaces in both cases. Application of the energy balance theory of brittle fracture has provided theoretical criteria for debonding failure. These equations have been verified experimentally using polymethylmethacrylate models. There were three conclusions: (1) interfacial cracks can propagate along the direction of the applied force in a theoretically predictable manner; (2) these interfacial cracks must be triggered by flaws, either edge cracks or internal defects; (3) it is wrong to characterise brittle interfacial adhesion by means of an interlaminar shear strength. Instead, the interfacial fracture energy should be used.  相似文献   

8.
Fracture toughness of brittle materials is calibrated in experiments where a sample with a preexisting crack is loaded up to a critical point of the onset of static instability. Experiments with ceramics, for example, exhibit a pronounced dependence of the toughness on the sharpness of the crack/notch: the sharper is the crack the lower is the toughness. These experimental results are not entirely compatible with the original Griffith theory of brittle fracture and Linear Elastic Fracture Mechanics which both ignore the crack sharpness.To explain the experimental observations qualitatively we earlier considered Mode I cracks [Volokh KY, Trapper P. Fracture toughness from the standpoint of softening hyperelasticity. J Mech Phys Solids 2008;56:2459-72.] and in the present work we extend our considerations to Mode II cracks. We simulate pure shear of a thin plate with a small crack of a finite and varying sharpness. In simulations we introduce the failure energy as a limiter for the stored energy of the Hookean solid. The energy limiter induces softening, indicating material failure. Thus, elasticity with softening allows capturing the critical point of the onset of static instability of the cracked plate, which corresponds to the onset of the failure propagation at the tip of the crack. In numerical simulations we find that the magnitude of the fracture toughness can not be determined uniquely because it depends on the sharpness of the crack: the sharper is the crack the lower is the toughness.Based on the obtained results we argue that a stable magnitude of the toughness of brittle materials can only be reached when a characteristic size of the crack tip is comparable with a characteristic length of the material microstructure, e.g. grain size, atomic distance etc. In other words, the toughness can be calibrated only under conditions where the hypothesis of length-independent continuum fails.  相似文献   

9.
Mechanical properties of ceramics obtained by the sintering of stabilized zirconia microspheres are investigated. Strength at compression and tension, elastic deformation and modulus of elasticity at compression, specific works of fracture, of fracture initiation, and stress intensity factor are determined. An expression is proposed to establish the dependence of strength on macrostructure parameters of brittle material sintered from microspheres, and its analysis is given.  相似文献   

10.
Plaster of Paris is a brittle, porous solid, easy to shape, which has potential as a model material for the study of brittle, porous, solids such as ceramics, rocks and cement. This paper describes the mechanical properties of plaster of Paris — modulus, strength, fracture toughness, etc. — as a function of porosity. The material is then used to study the initiation and propagation of cracks in compression, as a function of porosity, stress state and stress concentration.  相似文献   

11.
拓展虚内键(Augmented virtual internal bond, AVIB)是基于虚内键理论的一种多尺度本构模型,它同时考虑了微观虚内键的法向和切向变形,应用Xu-Needleman势函数描述虚内键,并在微观势函数基础上直接导出了宏观本构方程。由于脆性材料的抗压强度与微元体的应力状态有关,为了反映这种微元应力效应,依据混凝土三轴抗压强度准则定义了应力效应系数,并将其反映到AVIB本构模型中。对于已有裂纹,采用无厚度单元劈裂法进行建模,避免了网格重划分问题和单独设置接触单元问题。结合AVIB模型与无厚度单元劈裂法,对多裂纹混凝土结构的破坏进行了模拟分析。结果表明,预制裂纹的长度不同,导致结构的主裂纹扩展方式不同。模拟所得的结构破坏模式及荷载-主裂纹口张开位移曲线与相关文献报道结果基本一致,表明了该方法的有效性。由于该文所采用的AVIB本构方程中已蕴涵了混凝土断裂能及三轴强度准则,因而在整个断裂模拟过程中,既避免了外部的断裂准则问题,同时又不需要网格重构及附加自由度,提高了计算效率,为大体积混凝土结构的破坏分析提供了一种简单的可行方法。  相似文献   

12.
The theories of propagation of brittle fracture fronts in solid materials are compared with experimental data. Instead of the well-known theory of the limit fracture stress the theory of limit velocity of fracture front is developed. Accordingly between the moving boundary at which the static strength is attained and the front of fracture the material can stand essential dynamic over-loadings. The experimental data on contained explosions in optically transparent intact blocks show that the limit velocity of brittle cracks front takes place immediately after the separation of the shock front and the front of brittle fracture. The hypothesis of the existence of limit front velocity leads to the conclusion that in the two-front structure of plane shock waves the amplitude of elastic precursors, known as “the Hugoniot elastic limit”, exceeds the value of ultimate static strength of a solid material and has to increase with increasing of a finite shock pressure. This effect is justified by a number of experiments with brittle materials. The analogue with the plane problem of a self-supporting brittle burst is shown. The explanation of exceeding of the ultimate static strength and of “the delay time” of fracture under the spall condition is given. The increasing of internal fractures, which is described by the dilatancy loosening of materials is discussed. The well-known laws of “the geometrical similarity” of contained explosions are in accordance with expression of the strength in terms of the ultimate stress but not in terms of Griffith's energy for creating of new cracks. The possibility of the regime of a limit front velocity of fracture at explosion motions in real rocks, for which the dilatancy has place, is discussed.  相似文献   

13.
In the absence of FRP plate/glue/concrete interface bond failure (i.e. interfacial debonding), eight possible flexural modes of failure are identified for reinforced concrete beams experiencing lateral loading, and strengthened in flexure with external FRP or steel plates glued to their soffits. All possible changes in such modes of failure, as a result of variations in the modulus of elasticity of the FRP material (assuming an associated constant value of ultimate tensile strength for the FRP plate in a given beam design), have been addressed in some detail, with a quantitative treatment of the critical values of the FRP modulus of elasticity associated with various failure mode transitions (i.e. changes).  相似文献   

14.
玄武岩纤维增韧混凝土冲击性能   总被引:4,自引:0,他引:4       下载免费PDF全文
采用三点弯曲冲击试验装置, 结合超声波测试技术, 研究了玄武岩纤维质量分数为0%~0.60%时, 玄武岩纤维增韧混凝土(Basalt Fiber Reinforced Concrete, BFRC)的冲击性能及其损伤演化规律, 研究了混凝土冲击破坏过程中基于超声波波速的损伤演化过程, 并应用体视显微镜观测了冲击过程中试件表面裂纹的发展, 分析了玄武岩纤维提高混凝土冲击韧性的机制。结果表明: 玄武岩纤维对混凝土的抗压强度无明显改善, 但可以显著提高混凝土的冲击韧性, 当纤维质量比为0.36%时冲击韧性提高了2.2倍。各玄武岩纤维掺量下混凝土的冲击破坏均表现出脆性特征, 但玄武岩纤维的加入有效提高了混凝土对冲击能量的吸收, 其临近破坏时损伤变量较素混凝土提高了40%~83%; 玄武岩纤维混凝土冲击破坏过程表现出多缝开裂的特征, 在最终破坏时主裂缝附近有明显的副裂缝出现。   相似文献   

15.
金浏  杜修力 《工程力学》2015,32(4):33-40
混凝土材料具有明显的应变率效应,对其力学性质增强机理的认识还不统一。在细观随机骨料模型基础上,采用特征单元尺度划分试件网格,推导了考虑材料拉/压强度应变率效应的细观单元等效本构关系,建立了非均质混凝土材料的细观单元等效化数值模型。基于二维模型对Dilger等混凝土动态压缩试验进行了数值模拟,获得的数值结果与试验数据及随机骨料模型结果吻合良好,证明了细观单元等效化方法的准确性;进而对三维混凝土试件动态单轴拉伸和压缩破坏模式及宏观力学性质的加载速率效应进行了研究。数值结果表明:随着加载速率的增加,混凝土裂纹(损伤)数量增大,混凝土破坏将耗散更多的能量,是混凝土动态强度提高的主要原因。  相似文献   

16.
Fibers for reinforcing cementitious composites are typically short and randomly dispersed in the matrix. Consequently, most of the fibers are inclined to the cracks that develop in the cement matrix and suffer from bending stress as these cracks open. For brittle fibers, such as carbon fibers, the bending stress may lead to flexural fiber rupture before the fiber attains its full capacity in direct tension. As a result, the efficiency of these fibers may be reduced. This phenomenon is not expected to occur in ductile fibers, which can yield locally rather than rupture. Predictions of a theoretical model show that the bending stress increases as the matrix becomes denser and suffer (an event which occurs as the matrix ages or due to the addition of silica-fume) and decreases for fibers of lower modulus of elasticity. Therefore, a reduction in strength with time in composites with dense matrices is expected for very brittle fibers of high modulus, moderate or no reduction for low modulus brittle fibers, and no reduction in strength is expected for ductile fibers. The long term properties of cementitious composites reinforced with various microfibers was studied to validate the model; PAN and Pitch type carbon fibers represented brittle fibers of high and low modulus, respectively; polypropylene and polyacrylonitrile fibers represented ductile fibers. The results showed good agreement with the theoretical model.  相似文献   

17.
The concept of limiting equilibrium in the theory of brittle fracture. The condition of finiteness of stresses and smooth closing and its relation to the energetical conditions of equilibrium. Some experimental grounds. Cohesion forces for an ideally brittle body and quasi-brittle body. Cohesion modulus and surface energy. Non-linear problem of the equilibrium of a body with cracks. Stability of cracks. Analysis of the conditions of fracture. Strength limits for a brittle body.  相似文献   

18.
Drying shrinkage is generally classified as an important hardened concrete property. It expresses the strain occurring in hardened concrete due to the loss of water. During the drying process, free and absorbed water is lost from the concrete. When the drying shrinkage is restrained, cracks can occur, depending on the internal stresses in the concrete. The ingress of deleterious materials through these cracks can cause decrease in the compressive strength and the durability of concrete. In this study, being as a fine aggregate in mortars, crushed tile (CT) effect on drying shrinkage and drying shrinkage cracking is investigated. Thus, compressive and flexural strength, modulus of elasticity, and free and restrained drying shrinkage tests are conducted on mortar specimens produced with and without crushed tile fine aggregate. The ring test has been used in order to investigate the cracks induced by restrained drying shrinkage. In this way, free drying shrinkage strain, along with the number and development of drying shrinkage cracks, of the crushed tile fine aggregate mortar composites are quantified and observed.  相似文献   

19.
Failure behavior of fine-grained columnar ice is investigated under compression. A special experimental set-up is used to achieve a uniform stress (strain) state in the specimen. The strength is then determined at several constant temperatures and strain rates.Three failure mechanisms have been identified: cleavage fracture, plastic flow, and linkage of grain boundary cracks. The failure mechanism is believed to be a material property. The failure mode, however, is dependent on the specimen geometry and the loading condition. Thorough investigation is made on the failure modes of ice specimens (4 × 8 × 12 cm blocks).A major conclusion is that ice is an excellent material to be used in the investigation of the failure of brittle polycrystalline materials.  相似文献   

20.
考虑孔隙及微裂纹影响的混凝土宏观力学特性研究   总被引:1,自引:0,他引:1  
杜修力  金浏 《工程力学》2012,29(8):101-107
混凝土是一种典型的多孔介质材料,孔隙分布错综复杂,孔径尺寸跨越微观尺度和宏观尺度,对混凝土弹性模量及强度等力学参数产生巨大影响.认为混凝土是由骨料、孔隙及砂浆基质组成的三相复合材料,采用Monte Carlo 法将孔隙、微裂纹及微缺陷与骨料颗粒随机投放在砂浆基质中.根据三相球模型及中空圆柱形杆件模型得到含孔材料的有效力学性质,并推导得到含孔材料的等效本构模型.建立含孔隙混凝土试件的细观单元等效化力学模型,对二级配含孔隙混凝土试件在单轴拉伸及压缩条件下的反应进行了非线性分析.结果表明:孔隙、微裂纹的存在对混凝土宏观弹性模量、强度及残余强度等力学性质都有很大影响,在对混凝土宏观力学特性分析及研究混凝土损伤断裂时不应忽略其影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号