首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
cBN/NiCrAl nanocomposite coatings were deposited by cold spraying using mechanically alloyed composite powders. To examine their thermal stability, the nanocomposite coatings were annealed at different temperatures up to 1000?°C. The microstructure of composite coatings was characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results showed that the nanostructure can be retained when the annealing temperature is not higher than 825?°C, which is 0.7 times of the melting point of the NiCrAl matrix. The dislocation density was significantly reduced when the annealing temperature was higher than 750?°C. The reaction between cBN particles and the NiCrAl matrix became noticeable when the annealing temperature was higher than 825?°C. The effects of grain refinement and work-hardening strengthening mechanisms were quantitatively estimated as a function of annealing temperature. The influence of annealing temperature on the contribution of different strengthening mechanisms to coating hardness was discussed.  相似文献   

2.
20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.  相似文献   

3.
The strengthening effect of fullerenes in aluminum matrix composites was investigated. The composites are produced using a two-step ball-milling technique combined with a hot rolling process. First, fullerene aggregates, where fullerene molecules initially come together to form giant particles (~200 μm in diameter) via van der Waals bonding, are shattered into smaller particles (~1 μm in diameter) by planetary milling. Second, primarily ball-milled fullerenes are dispersed in aluminum powder via attrition milling. Finally, aluminum/fullerene composite powder is consolidated by hot-rolling at 480 °C. For the composite sheet, grain refinement strengthening and dispersion hardening by fullerenes are accomplished at the same time, thereby exhibiting HV ~222 of Vickers hardness (e.g., ~740 MPa of yield strength) with only 2% (volume fraction) of fullerenes.  相似文献   

4.
A dense Al/SiCp composite coating with high volume fraction(60%)of nano SiCp reinforcement was fabricated by cold spraying of ball-milled Al-60SiCp composite powder.The morphologies evolution of the Al-60SiCp composite powder during ball milling and the microstructure and microhardness of the cold-sprayed Al-60SiCp composite coating were investigated.The results show that Al particles undergone fracture deformation and nano SiC particles are uniformly distributed in soft Al matrix after ball milling.A dense Al-60SiCp composite coating can be fabricated by cold spraying of ball milled composite powder.Nano SiC particles in the cold-sprayed Al-60SiCp composites coating exhibit a reasonably uniform distribution.The Hv0.5 microhardness of the Al-60SiCp composite coating is reached up to(5.30±0.53)GPa due to the enhancement of SiC particles,compared to(0.34±0.03)GPa for the pure Al bulk.  相似文献   

5.
The cavitational wear resistance of electroplated nickel composite layers was tested following ASTM G32. Particles of different hardness (titania and silicon carbide) and different sizes from micro-scale to nano-scale were incorporated up to 30 vol.% into a nickel matrix. Martens hardness is improved by grain refinement via particle incorporation. Compared to pure electroplated nickel films the composite layers strengthened by submicro-scale silicon carbide particles exhibit a decreased mass loss of one order of magnitude after 8 h testing time. Remarkably, layers with nano-scaled titania particles show a similar performance.

Apart from particle adherence failures, reduced mass loss of the composite layers correlate with improved hardness of the composite due to grain refinement of the matrix and dispersion hardening effects.  相似文献   


6.
Over the past decade,the interest in aluminum composites reinforced with carbon nanotubes has grown significantly.Studies have been carried out to overcome problems with uniform dispersion,interfacial bonding,void formation and carbide formation of the composites.In the present work,multi-wall carbon nanotubes(MWCNTs)aluminum composites were produced.High-energy ball milling with the aim at developing well-dispersed MWCNTs Al composites was followed by cold compaction,sintering,and hot extrusion at 500 ℃.Different amounts of stearic acid as processing control agent(PCA)is used in order to minimize cold welding of the Al particles,and to produce finer particles.Differential scanning calorimetry(DSC),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and X-ray diffraction(XRD)were employed to analyze the MWCNTs,the aluminum powder,and the composites' microstructural behavior.The hardness and tensile properties of the composites are also evaluated.The results showed 500% increase in yield stress after the addition of 1 wt% MWCNTs in Al-MWCNTs based composite.The ball-milling time of 4 h is found to be sufficient as excessive milling time destroys a vast number of MWCNTs.  相似文献   

7.
Microstructure and Behaviors of Nano Composite Coating   总被引:2,自引:0,他引:2  
ELECTRO BRUSH PLATING is a traditionaltechnology in the field of surface engineering.Thisprocess has been widely used due to its advantagessuch as simplicity of equipment,various type ofcoatings,excellent adhesion between coating andmatrix,and so on.It is significantly used as mechanicalrepairing without departing or rushing to repair in openregion.Nano particles result to surface effect,smallsize effect,and other effects since its size of is less than100nm.So they are used in surface …  相似文献   

8.
The purpose of this study is to manufacture metal matrix composite coatings by thermal spraying. In order to improve coating’s mechanical properties, it is necessary to increase homogeneity. To meet this objective, the chosen approach was to optimize the powder morphology by mechanical alloying. Indeed, the mechanical alloying method (ball milling) was implemented to synthesize NiCr-Cr3C2 and NiCrBSi-WC composite powders by using cold spraying and high-velocity oxygen fuel process, respectively. After optimizing the process parameters on powder grain size, the composite coatings were compared with standard coatings manufactured from mixed powders. SEM observations, hardness measurements, and XRD analyses were the first technologies implemented to characterize the metal matrix composite coatings. Different characteristics were then observed. When mechanical alloying process is employed to synthesize composite powders strengthened by particle dispersion, the powders tend to fracture into small segments, especially when high content of hard particles is added. Powder microstructures were then refined, which induced thinner coating morphologies and reduced porosity rate. Once an improved microstructure is obtained, manufacturing of coating using milled powders was found suitable in comparison with coatings manufactured only with mixed powders.  相似文献   

9.
铸造SiCp/2024复合材料微观结构与强化机制的研究   总被引:5,自引:0,他引:5  
研究了SiC体积分数分别为5,10,15和20%的2024Al基复合材料在峰值时效态下的微观结构和强化机制透射电镜观察和Vickers硬度测定表明:增强相的加入使复合材料基体中的位错密度升高,亚晶尺寸略有下降,但基体的硬度却无明显升高拉伸试验发现,弹性模量和加工硬化指数随SiC体积分数增加而显著提高,初始流变应力先下降后升高本文认为由增强相导致的应力集中和基体形变的高约束度是控制SiC_p/2024复合材料形变与强化的两个主要因素  相似文献   

10.
目的 激光熔覆是集节能、环保、减排于一身的低碳技术,能够解决涂层存在的粗大枝晶、较大开裂敏感性及纳米增强颗粒昂贵等难题。方法 借助Al颗粒的易氧化特性,提出一种预氧化气固反应手段,原位制备铝粉表面附着氧化铝的复合型粉体,采用激光熔覆技术将复合粉末制备成冶金涂层,并考察预氧化方法对NiAl涂层组织和性能的改性规律。结果 通过预氧化方法获得了铝粉表面附着氧化铝的复合型粉体,且制备的涂层成形良好、无缺陷;预氧化涂层的枝晶更细小,XRD测试表明预氧化涂层中出现了Al2O3。由于预氧化方法带来的细晶强化和第二相强化作用,使得预氧化涂层的硬度在NiAl涂层的基础上提升了约20%,预氧化方法引入的氧促使摩擦界面形成了一层氧化物润滑膜,使得预氧化处理后涂层的摩擦因数降低了约23%,同时耐磨性得到显著提升。结论 采用预氧化方法以低成本原位合成了复合型粉体,通过预氧化方法使涂层实现了从组织结构到性能的良性转变,为推动绿色低碳技术发展,高性能新型粉体的研发,以及NiAl涂层的应用提供一些思路与方法。  相似文献   

11.
In this study, a dense Al2319/TiN composite coating was successfully prepared using cold spraying with mechanically blended powders. TiN particles were uniformly dispersed in the coating matrix with a volume fraction of 38.7 vol.%, which is higher than that of 32.7 vol.% in the powder blend. Compared with the pure Al2319 coating, the Al2319/TiN composite coating exhibits a significantly increased adhesive strength. The incorporation of the TiN particles increases the coating hardness from 106 ± 7.8 to 154.5 ± 18.9 Hv0.2. In addition, compared with the pure Al2319 coating, the composite coating exhibits a significantly improved tribological performance. The results obtained in this work indicated that cold spraying is a promising process to fabricate Al alloy-based composite coatings.  相似文献   

12.
High power laser cladding of [(Fe0.5Co0.5)0.75B0.2Si0.05] 95.7 Nb4.3 powder mixture afier-remelting was performed to fabricate Fe-based metallic glass coating on the surface of steel of China Classification Society:Grade B (CCS-B).Scanning electron microscopy (SEM),X-ray diffraction (XRD),transmission electron microscopy (TEM)with energy dispersive spectrometer (EDS),Vickers hardness tester and corrosion resistance tester were employed to characterize microstructures and evaluate properties of this coating.According to the results of SEM ,XRD and TEM ,the cladding coating consisted of nanocrystalline embedded in amorphous phase.EDS data indicated that Nb segregated in the amorphous matrix.The results of hardness test revealed that the hardness of the top layer was higher than that of the inner layer of the coating.The coating exhibited excellent corrosion resistance in a 3.5% NaCl solution.  相似文献   

13.
目的进一步提高脉冲-超声电沉积Ni-TiN纳米复合镀层的显微硬度,改善镀层的耐磨性。方法利用扫描电镜、X射线衍射仪、显微硬度计、摩擦磨损仪器,对经200~600℃热处理后Ni-TiN纳米复合镀层的表面形貌、内部组织结构、显微硬度和磨损性能进行检测,研究了热处理方式对复合镀层的表面形貌、晶相组织、显微硬度和耐磨性的影响。结果经300℃保温1.5 h后的镀层表面最为平整和光滑。同时镀层开始实现非晶态向晶态演变,并且镀层硬度最高,其值高达815HV。随热处理温度的升高,镀层晶粒变大,表面平整度降低。经600℃热处理,保温1.5h后,镀层的耐磨性最佳,磨损量仅为13.2 mg。结论经热处理之后,镀层硬度得到一定程度的提高,主要是TiN纳米粒子起到弥散和细晶强化作用。耐磨性得到有效改善,主要是由于镀层韧性、镀层和基体间的结合力得到提高,镀层形成一层致密的氧化膜的原因。  相似文献   

14.
描述了一种制备Ag/Sn O2电接触材料(Sn O2的质量分数为12%)的新方法。首先采用共沉淀法制备Ag-Sn O2纳米复合粉体(Sn O2的质量分数为42%)并对该Ag-Sn O2纳米复合粉体进行了表征。XRD结果表明制备的复合粉体由纯立方相的Ag和四方金红石相的Sn O2组成;SEM及TEM结果表明,纳米Sn O2与纳米Ag颗粒均匀弥散分布在复合粉体中;并借助于TG-DTA热分析对纳米复合粉体前驱体的制备过程进行了分析。然后,将Ag-Sn O2纳米复合粉体与Ag粉混合,采用粉末冶金法制备成Ag/Sn O2电接触材料,并对制备的Ag/Sn O2电接触材料进行了表征。结果表明,由于纳米Sn O2在Ag基体中弥散分布,制备的材料的物理性能如密度、硬度及电导率比普通工艺制备的材料好。  相似文献   

15.
In general, size, shape and dispersion of phases in alloys significantly affect mechanical properties. In this study, the mechanical properties of Mo-Si-B alloys were experimentally investigated with regards to the refinement of intermetallic compound. To confirm the size effect of the intermetallic compound phases on mechanical properties, two differently sized intermetallic compound powders consisting Mo5SiB2 and Mo3Si were fabricated by mechano-chemical process and high-energy ball milling. A modified powder metallurgy method was used with core-shell intermetallic powders where the intermetallic compound particles were the core and nano-sized Mo particles which formed by the hydrogen reduction of Mo oxide were the shells, leading to the microstructures with uniformly distributed intermetallic compound phases within a continuous α-Mo matrix phase. Vickers hardness and fracture toughness were measured to examine the mechanical properties of sintered bodies. Vickers hardness was 472 Hv for the fine intermetallic compound powder and 415 Hv for the coarse intermetallic compound powder. The fracture toughness was 12.4 MPa·√m for the fine IMC powders and 13.5 MPa·√m for the coarse intermetallic compound powder.  相似文献   

16.
用X射线衍射仪、扫描电子显微镜、透射电子显微镜、显微硬度仪对经喷丸处理的Cu-0.8Cr-0.1Zr合金进行组织结构分析和硬化效果的测试,并在此基础上探讨了合金喷丸强化机制。结果表明,合金喷丸后在距表层300μm深度内形成了剧烈变形层和变形层两种不同变形程度的区域。其中剧烈变形层内位错密度较高,并形成位错胞亚结构和孪晶亚结构。随喷丸时间的增加,剧烈变形层晶粒尺寸可细化至80nm,表层HV硬度达到1.99GPa,较未变形试样提高1倍以上。合金的喷丸强化机制为细晶强化和应变硬化,而应变硬化的贡献大于细晶强化。  相似文献   

17.
利用双脉冲电流特性与超声场高频振荡效应电沉积法制备Ni-P/n-CeO2纳米复合镀层。借助环境扫描电镜(E-SEM/EDXA)、透射电子显微镜(TEM)及X射线衍射仪(XRD),对镀层微观形貌、化学成分及晶体结构进行分析。结果表明:掺杂15g/L纳米CeO2(RE)颗粒,稀土Ce含量与沉积速度分别可达2.3%和68μm/h,晶粒致密,呈现非晶态;在600°C下时效处理2h,复合镀层的显微硬度高达HV780。讨论了纳米稀土颗粒吸附特性与脉冲过电势对电沉积机理的影响。Ce4+或n-CeO2吸附在阴极活性表面形成大量具有催化作用的晶核,沉积并钉扎在开裂的纹裂源边缘。在高温时效时,纳米颗粒与部分Ni晶粒充分弥散互溶,占据空间,阻碍晶粒粗化及裂纹扩展,从而有效提高复合镀层的裂纹扩展抗力与显微硬度。  相似文献   

18.
A practical technique to prepare transmission electron microscopy (TEM) thin foil containing powder particle was described and the data for the codeposition of two type particles with copper in the electroplating were presented. By depositing the particles which were distributed in CuSO4 electrolyte on cathode together with Cu^2+ in electrodeposition bath, composite coating with suitable thickness could be formed. The thin coating was separated from the substrate and cut into a disc with diameter of 3mm for electropolishing. When the Cu matrix was thinned during electropolishing, the particles contained in the coating plate were also thinned to meet the suitable thickness for TEM observation. Various experimental results revealed that during electrodepositing the current density, pH-value of electrolyte and stirring mode all have significant effects on the distribution of particles in composite coating and the surface quality of the composite coating. The proper parameters used during electrodepositing to prepare TEM thin foil containing powder particle were discussed.  相似文献   

19.
柱塞表面激光熔覆铁基涂层的强韧化机理   总被引:3,自引:3,他引:0       下载免费PDF全文
文中在柱塞表面激光熔覆制备高硬度铁基涂层,采用SEM,XRD,EPMA和TEM等手段研究熔覆层组织特征及耐磨性,阐述其强韧化机理.结果表明,激光熔覆铁基合金涂层成形良好,无裂纹及气孔等缺陷,熔覆层与基体呈冶金结合,组织由(Ni,Fe)固溶体、(Cr,Fe)23C6碳化物和少量孪晶马氏体组成.铁基熔覆层的强化机制主要有细晶强化、固溶强化、弥散强化以及马氏体强化;熔覆层内(Ni,Fe)固溶体及细晶强化的综合作用,保证了高硬度铁基涂层的韧性.铁基熔覆层显微硬度较45钢提高4倍,最大值HHV0.2=850 GPa;熔覆层耐磨性明显高于45钢,45钢表面出现大面积疲劳剥落,铁基熔覆层磨损面平整,磨痕很浅且少,磨损机制为轻微的磨粒磨损.  相似文献   

20.
The limited deformation of hard cermet particles and impacted coating makes it difficult for conventional thermal spray powders to continuously build up on impact in cold spraying. In this study, three nanostructured WC-12Co powders with different porous structure and apparent hardness were employed to deposit WC-Co coatings on stainless steel substrate by cold spraying. The deposition characteristics of three powders of porosity from 44 to 5% were investigated. It was found that WC-Co coating is easily built-up using porous powders with WC particles bonded loosely and a low hardness. The microhardness of WC-12Co coatings varied from 400 to 1790 Hv with powders and spray conditions, which depends on the densification effects by impacting particles. With porous WC-Co powders, the fracture of particles on impact may occur and low deposition efficiency during cold spraying. The successful building up of coating at high deposition efficiency depends on the design of powder porous structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号