首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fresh pitaya (Stenocereus griseus) juice was inoculated with Zygosaccharomyces bailii to be processed using a continuous ultraviolet-C light (UV-C) (57 μW/cm2) system. Inoculated and uninoculated juices were processed at selected flow rates (16.49, 23.78, and 30.33 mL/s) and treatment times (5, 10, 15, 20, 25, and 30 min). Untreated, inoculated, and uninoculated pitaya juices were stored at 4 °C during 25 days. Microbiological (yeasts plus molds and total counts) and physicochemical (pH, total soluble solids, color, phenolic compounds, betalains, and antioxidant activity) characteristics were evaluated in fresh and processed juices. The net change in color increased as treatment time increased, reaching a maximum value of 3.9. A substantial reduction of phenolic compounds (11.6%), betalains (14.6%), and antioxidant activity (37.0%) were observed in juice treated at 30.33 mL/s during 30 min. A reduction of 1.8 log cycles of Z. bailii was observed at the highest UV-C light treatment.  相似文献   

2.
The objective of this study was to evaluate the efficacy of supercritical carbon dioxide (SCCO2) for inactivating Lactobacillus plantarum in apple cider using a continuous system with a gas-liquid metal contactor. Pasteurized apple cider without preservatives was inoculated with L. plantarum and processed using a SCCO2 system at a CO2 concentration range of 0-12% (g CO2/100 g product), outlet temperatures of 34, 38, and 42 °C, a system pressure of 7.6 MPa, and a flow rate of 1 L/min. Processing with SCCO2 significantly (P < 0.05) enhanced inactivation of L. plantarum in apple cider, resulting in a 5 log reduction with 8% CO2 at 42 °C. The response surface model indicated that both CO2 concentration and temperature contributed to the microbial inactivation. The extent of sublethal injury in surviving cells in processed apple cider increased as CO2 concentration and processing temperature increased, however the percent injury dramatically decreased during SCCO2 processing at 42 °C. Structural damage in cell membranes after SCCO2 processing was observed by SEM. Refrigeration (4 °C) after SCCO2 processing effectively inhibited the re-growth of surviving L. plantarum during storage for 28 days. Thus this study suggests that SCCO2 processing is effective in eliminating L. plantarum and could be applicable for nonthermal pasteurization of apple cider.  相似文献   

3.
In this work, the susceptibility to pulsed light (PL) treatments of both a Gram-positive (L. innocua 11288) and a Gram-negative (E. coli DH5-??) bacteria inoculated in apple (pH = 3.49, absorption coefficient 13.9 cm− 1) and orange juices (pH = 3.78, absorption coefficient 52.4 cm− 1) was investigated in a range of energy dosages from 1.8 to 5.5 J/cm2. A laboratory scale continuous flow PL system was set up for the experiments, using a xenon flash-lamp emitting high intensity light in the range of 100-1100 nm. The flashes lasted 360 ??s at a constant frequency of 3 Hz.The results highlighted how the lethal effect of pulsed light depended on the energy dose supplied, the absorption properties of liquid food as well as the bacterial strain examined. The higher the quantity of the energy delivered to the juice stream, the greater the inactivation level. However, the absorbance of the inoculated juice strongly influenced the dose deliver and, therefore, the efficiency of the PL treatment. Among the bacteria tested, E. coli cells showed a greater susceptibility to the PL treatment than L. innocua cells in both apple and orange juices. Following treatment at 4 J/cm2, microbial reductions in apple and orange juices were, respectively, 4.00 and 2.90 Log-cycles for E. coli and 2.98 and 0.93 Log-cycles for L. innocua.Sublethally injured cells were also detected for both bacterial strains, thus confirming that membrane damage is an important event in bacterial inactivation by PL.  相似文献   

4.
The bactericidal effect on food processing surfaces of ceiling-mounted UV-C light (wavelength 254 nm) was determined in a fish smoke house after the routine cleaning and disinfection procedure. The total aerobic counts were reduced during UV-C light exposure (48 h) and the number of Listeria monocytogenes positive samples went from 30 (of 68) before exposure to 8 (of 68). We therefore in a laboratory model determined the L. monocytogenes reduction kinetics by UV-C light with the purpose of evaluating the influence of food production environmental variables, such as presence of NaCl, organic material and the time L. monocytogenes was allowed to adhere to steel before exposure. L. monocytogenes grown and attached in tryptone soy broth (TSB) with glucose were rapidly killed (after 2 min) by UV-C light. However, bacteria grown and adhered in TSB with glucose and 5% NaCl were more resistant and numbers declined with 4-5 log units during exposure of 8-10 min. Bacteria grown in juice prepared from cold-smoked salmon were protected and numbers were reduced with 2-3 log when UV-C light was used immediately after attachment whereas numbers did not change at all if bacteria had been allowed to form a biofilm for 7 days before exposure. It is not known if this enhanced survival is due to physiological changes in the attached bacterial cells, a physical protection of the cells in the food matrix or a combination. In conclusion, we demonstrate that UV-C light is a useful extra bacteriocidal step and that it, as all disinfecting procedures, is hampered by the presence of organic material.  相似文献   

5.
We investigated the formation of single and mixed species biofilms of Listeria monocytogenes strains EGD-e and LR-991, with Lactobacillus plantarum WCFS1 as secondary species, and their resistance to the disinfectants benzalkonium chloride and peracetic acid. Modulation of growth, biofilm formation, and biofilm composition was achieved by addition of manganese sulfate and/or glucose to the BHI medium. Composition analyses of the mixed species biofilms using plate counts and fluorescence microscopy with dual fluorophores showed that mixed species biofilms were formed in BHI (total count, 8-9 log10 cfu/well) and that they contained 1-2 log10 cfu/well more L. monocytogenes than L. plantarum cells. Addition of manganese sulfate resulted in equal numbers of both species (total count, 8 log10 cfu/well) in the mixed species biofilm, while manganese sulfate in combination with glucose, resulted in 1-2 log10 more L. plantarum than L. monocytogenes cells (total count, 9 log10 cfu/well). Corresponding single species biofilms of L. monocytogenes and L. plantarum contained up to 9 log10 cfu/well. Subsequent disinfection treatments showed mixed species biofilms to be more resistant to treatments with the selected disinfectants. In BHI with additional manganese sulfate, both L. monocytogenes strains and L. plantarum grown in the mixed species biofilm showed less than 2 log10 cfu/well inactivation after exposure for 15 min to 100 μg/ml benzalkonium chloride, while single species biofilms of both L. monocytogenes strains showed 4.5 log10 cfu/well inactivation and single species biofilms of L. plantarum showed 3.3 log10 cfu/well inactivation. Our results indicate that L. monocytogenes and L. plantarum mixed species biofilms can be more resistant to disinfection treatments than single species biofilms.  相似文献   

6.
The purposes of this study were to determine the inactivation effects of intense pulsed light (IPL) on Listeria monocytogenes and the commercial feasibility of this sterilization method. The inactivation of L. monocytogenes at cultivated plates increased with increasing electric power and treatment time. Approximately 4–5 log reduction of the cell was achieved with IPL treatment for 5000, 600, 300, and 100 μs at 10, 15, 20, and 25 kV of voltage pulse, respectively. In the early stages of IPL treatments at 10, 15, and 20 kV, little inactivation was observed with a critical treatment time (tc) of 360.6, 95.5, and 32.2 μs, respectively, while an abrupt inactivation without a critical treatment time was observed at 25 kV. The sterilization effects on commercial infant foods inoculated with L. monocytogenes were investigated at 15 kV, which showed higher energy efficiency for the inactivation of L. monocytogenes.  相似文献   

7.
This study focused on the synergistic inactivation effects of combined treatment of HHP and dissolved CO2 on microorganisms. The aim was to reduce the treatment pressure of the traditional HHP technology and make it more economically feasible. The combined treatment showed a strong bactericidal effect on Staphylococcus aureus and Escherichia coli in liquid culture, which usually have high levels of barotolerance under pressure alone. To identify the influence of CO2, a new setup to dissolve, retain and measure the concentration of CO2 was constructed. The results demonstrated that an inactivation rate of more than 8 log units was obtained for E. coli both at 300 MPa with 1.2 NL/L CO2 and at 250 MPa with 3.2 NL/L CO2, while only 2.2 and 1.8 log reductions were observed at 300 MPa and 250 MPa, respectively, for the HHP treatments alone. For S. aureus, the inactivation rate of more than 7 log units was found at 350 MPa with 3.8 NL/L CO2, while only a 0.9 log reduction was achieved at this pressure in the absence of CO2. The SEM photographs showed seriously deformed cells after the synergistic treatments. In contrast, the cells treated with individual HHP maintained a relatively smooth surface with invaginations. Propidium iodide staining and fluorescence observation was performed after pressure treatments. The results demonstrated that the combination of CO2 with HHP also promoted pressure induced cell membrane permeabilization greatly. It was deduced that the enrichment of CO2 on the cell surface and its penetration into the cells at high pressure accounted for the membrane damage and cell death.  相似文献   

8.
Flow cytometry (FCM) is a powerful tool for analyzing physiological characteristics of microorganisms on a single-cell basis and identifying heterogeneities within population. This work analyzed the UV-C induced damage on Escherichia coli ATCC 11229; Listeria innocua ATCC 33090 and Saccharomyces cerevisiae KE162 cells by applying flow cytometry technique. The UV-C doses, obtained by altering the exposure time and measured by the iodide-iodate chemical actinometer, ranged between 0 and 5 kJ/m2. E. coli; L. innocua and S. cerevisiae populations were quantified by plate count technique. For flow cytometry studies, cells were labeled with fluorescein diacetate (FDA) for detecting membrane integrity and esterase activity, and with propidium iodide (PI) for monitoring membrane integrity. The results showed that mechanisms of cellular damage differed according to time of exposure to ultraviolet radiation and the organism tested. E. coli and S. cerevisiae sub-populations with PI increased within the first minutes of UV-C treatment, without much change afterwards. On the contrary, FCM was used to detect the inactivation of those L. innocua sub-populations of viable microorganisms (maintaining metabolic activity) which were non-culturable due to membrane rupture and thus not detectable by viable plate count technique.  相似文献   

9.
S. Rajan  A.E. Yousef 《LWT》2006,39(8):844-851
The use of pressure-assisted thermal processing (PATP) to inactivate bacterial spores in shelf-stable low-acid foods, without diminishing product quality, has received widespread industry interest. Egg patties were inoculated with Bacillus stearothermophilus spores (106 spores/g) and the product was packaged in sterile pouches by heat sealing. Test samples were preheated and then PATP-treated at 105 °C at various pressures and pressure-holding times. Thermal inactivation of spores was studied at 121 °C using custom-fabricated aluminum tubes; this treatment served as a control. Application of PATP at 700 MPa and 105 °C inactivated B. stearothermophilus spores, suspended in egg matrix rapidly, (4 log reductions in 5 min) when compared to thermal treatment at 121 °C (1.5 log reduction in 15 min). Spore inactivation by PATP progressed rapidly (3 log reductions at 700 MPa and 105 °C) during pressure-hold for up to 100 s, but greater holding times (up to 5 min) had comparatively limited effect. When PATP was applied to spores in water suspension or egg patties, D values were not significantly different. While thermal inactivation of spores followed first-order kinetics, PATP inactivation exhibited nonlinear inactivation kinetics. Among the nonlinear models tested, the Weibull model best described PATP inactivation of B. stearothermophilus spores in the egg product.  相似文献   

10.
Survival of Lactobacillus plantarum in model solutions and fruit juices   总被引:1,自引:0,他引:1  
The aim of the work was to study the survival of Lactobacillus plantarum NCIMB 8826 in model solutions and develop a mathematical model describing its dependence on pH, citric acid and ascorbic acid. A Central Composite Design (CCD) was developed studying each of the three factors at five levels within the following ranges, i.e., pH (3.0-4.2), citric acid (6-40 g/L), and ascorbic acid (100-1000 mg/L). In total, 17 experimental runs were carried out. The initial cell concentration in the model solutions was approximately 1 × 108 CFU/mL; the solutions were stored at 4 °C for 6 weeks. Analysis of variance (ANOVA) of the stepwise regression demonstrated that a second order polynomial model fits well the data. The results demonstrated that high pH and citric acid concentration enhanced cell survival; one the other hand, ascorbic acid did not have an effect. Cell survival during storage was also investigated in various types of juices, including orange, grapefruit, blackcurrant, pineapple, pomegranate, cranberry and lemon juice. The model predicted well the cell survival in orange, blackcurrant and pineapple, however it failed to predict cell survival in grapefruit and pomegranate, indicating the influence of additional factors, besides pH and citric acid, on cell survival. Very good cell survival (less than 0.4 log decrease) was observed after 6 weeks of storage in orange, blackcurrant and pineapple juice, all of which had a pH of about 3.8. Cell survival in cranberry and pomegranate decreased very quickly, whereas in the case of lemon juice, the cell concentration decreased approximately 1.1 logs after 6 weeks of storage, albeit the fact that lemon juice had the lowest pH (pH ~ 2.5) among all the juices tested. Taking into account the results from the compositional analysis of the juices and the model, it was deduced that in certain juices, other compounds seemed to protect the cells during storage; these were likely to be proteins and dietary fibre In contrast, in certain juices, such as pomegranate, cell survival was much lower than expected; this could be due to the presence of antimicrobial compounds, such as phenolic compounds.  相似文献   

11.
Strain ST16PA, isolated from papaya was identified as Lactobacillus plantarum based on biochemical tests, PCR with species-specific primers and 16S rDNA sequencing. L. plantarum ST16PA produces a 6.5 kDa bacteriocin, active against different species from genera Enterobacter, Enterococcus, Lactobacillus, Pseudomonas, Streptococcus and Staphylococcus and different serotypes of Listeria spp. The peptide is inactivated by proteolytic enzymes, but not when treated with ??-amylase, catalase, lipase, Triton X-100, SDS, Tween 20, Tween 80, urea, NaCl and EDTA. However, presence of 1% Triton X-114 deactivates the bacteriocin. No change in activity was recorded after 2 h at pH values between 2.0 and 12.0, and after treatment at 100 °C for 120 min or 121 °C for 20 min. The mode of activity against Lactobacillus sakei ATCC 15521, Enterococcus faecalis ATCC 19443 and Listeria innocua 2030C was bactericidal, resulting in cell lysis and enzyme-leakage. No significant differences in cell growth and bacteriocin production were observed when strain ST16Pa was cultured in MRS broth at 26 °C and 30 °C for 24 h (25 600 AU/ml). However, even though strain ST16PA grows well in MRS broth at 15 °C and 37 °C, a reduction of bacteriocin production was observed (400 AU/ml and 1600 AU/ml, respectively). In addition, effect of MRS medium components, different initial pH and additions of glycerol or vitamins to the media on bacteriocin ST16Pa production was studied.Peptide ST16PA adsorbs (400 AU/ml) to producer cells. However, bacteriocin ST16Pa was adsorbed at 50% to cells of L. innocua 2030C and at 75% to L. sakei ATCC 15521 and E. faecalis ATCC 19433 when experiments were conducted at 30 °C and pH 6.5. Adsorption of bacteriocin ST16Pa to target cells at different temperatures, pH and in presence of potassium sorbate, sodium nitrate, sodium chloride, ascorbic acid, Tween 80 and Tween 20 were also studied. To the best of our knowledge, this is the first report on detection of L. plantarum in papaya.  相似文献   

12.
13.
This study was focused on the possibility to inactivate main food pathogens, their spores and biofilms on the surface of packaging material polyolefine by Na-chlorophyllin (Na-Chl)-based photosensitization and to compare efficiency of this treatment with conventional antimicrobials.Data indicate that Bacillus cereus and Listeria monocytogenes were effectively inactivated (7 log) by Na-Chl (7.5 × 10−7 M)-based photosensitization in vitro and on the surface of packaging. Meanwhile to achieve adequate inactivation of thermo-resistant strains, spores or biofilms the higher Na-Chl concentration and longer illumination times had to be used. Comparison of different surface decontamination treatments reveal that photosensitization is much more effective against B. cereus and L. monocytogenes attached on the surface than washing with water or 200 ppm Na-hypochlorite.Our data support the idea that photosensitization may serve in the future for the development of human and environment friendly, non-thermal surface decontamination technique.  相似文献   

14.
The effects of Lactobacillus plantarum alone or in combination with chitosan were evaluated on quality and color retention in rambutan fruits (Nephelium lappaceum) stored at 25 °C and 10 °C with 75 ± 2.5% of relative humidity for 10 and 15 days, respectively. The development of the microorganisms was evidenced by viability analyses and lactic acid production. The application of L. plantarum significantly improved color retention (a* and L*), and reduced weight losses. The lactobacilli, alone or in combination with chitosan, preserved fruit quality characteristics such as firmness, total soluble solids and titratable acidity. The lactobacilli application on rambutan pericarp produced acidification of pericarp and avoided the browning; thereby desiccation was prevented due to biofilm formation.  相似文献   

15.
This research investigated the efficacy of gaseous ozone on the inactivation of Escherichia coli ATCC 25922 and NCTC 12900 strains in apple juice of a range of pH levels, using an ozone bubble column. The pH levels investigated were 3.0, 3.5, 4.0, 4.5 and 5.0. Apple juice inoculated with E. coli strains (106 CFU/mL) was treated with ozone gas at a flow rate of 0.12 L/min and ozone concentration of 0.048 mg/min/mL for up to 18 min. Results show that inactivation kinetics of E. coli by ozone were affected by pH of the juice. The ozone treatment duration required for achieving a 5-log reduction was faster (4 min) at the lowest pH than at the highest pH (18 min) studied. The relationship between time required to achieve 5 log reduction (t5d) and pH for both strains was described mathematically by two exponential equations. Ozone treatment appears to be an effective process for reducing bacteria in apple juice and the required applied treatment for producing a safe apple juice is dependant on its acidity level.  相似文献   

16.
Lauric arginate (LAE) at concentrations of 200 ppm and 800 ppm was evaluated for its effectiveness in reducing cold growth of Listeria monocytogenes in whole milk, skim milk, and Queso Fresco cheese (QFC) at 4°C for 15 to 28 d. Use of 200 ppm of LAE reduced 4 log cfu/mL of L. monocytogenes to a nondetectable level within 30 min at 4°C in tryptic soy broth. In contrast, when 4 log cfu/mL of L. monocytogenes was inoculated in whole milk or skim milk, the reduction of L. monocytogenes was approximately 1 log cfu/mL after 24 h with 200 ppm of LAE. When 800 ppm of LAE was added to whole or skim milk, the initial 4 log cfu/mL of L. monocytogenes was nondetectable following 24 h, and no growth of L. monocytogenes was observed for 15 d at 4°C. With surface treatment of 200 or 800 ppm of LAE on vacuum-packaged QFC, the reductions of L. monocytogenes within 24 h at 4°C were 1.2 and 3.0 log cfu/g, respectively. In addition, the overall growth of L. monocytogenes in QFC was decreased by 0.3 to 2.6 and by 2.3 to 5.0 log cfu/g with 200 and 800 ppm of LAE, respectively, compared with untreated controls over 28 d at 4°C. Sensory tests revealed that consumers could not determine a difference between QFC samples that were treated with 0 and 200 ppm of LAE, the FDA-approved level of LAE use in foods. In addition, no differences existed between treatments with respect to flavor, texture, and overall acceptability of the QFC. Lauric arginate shows promise for potential use in QFC because it exerts initial bactericidal activity against L. monocytogenes at 4°C without affecting sensory quality.  相似文献   

17.
Inactivation of Listeria innocua on food packaging materials by Pulsed Light (PL) treatment was investigated. Coupons of low density polyethylene (LDPE), high density polyethylene (HDPE), polyethylene-laminated ultra-metalized polyethylene terephthalate (MET), polyethylene-coated paperboard (TR), and polyethylene-coated aluminum foil paperboard laminate (EP) were inoculated with L. innocua cells in stationary growth phase. Inoculated coupons (∼8 CFU/coupon) were treated with Pulsed Light fluence of up to 8.0 J/cm2, and survivors were determined. Reductions up to 7.2 ± 0.29, 7.1 ± 0.06, 4.4 ± 0.85, 4.5 ± 1.32, and 3.5 ± 0.82 log CFU/coupon were obtained on LDPE, HDPE, MET, TR, and EP, respectively. Inactivation data were used to determine Weibull kinetic parameters and predict inactivation in a wide range of fluence. Increasing surface reflectivity and surface roughness appeared to induce lower inactivation. Minimal surface heating was observed for all materials except MET, on which significant heating occurred. These results demonstrate the potential of Pulsed Light as an effective method for decontaminating food packaging materials.  相似文献   

18.
Lactobacillus plantarum is the main species responsible for the spontaneous fermentation of Spanish-style green olives. Olives and virgin oil provide a rich source of phenolic compounds. This study was designed to evaluate inhibitory growth activities of nine olive phenolic compounds against four L. plantarum strains isolated from different sources, and to explore the L. plantarum metabolic activities against these phenolic compounds. None of the nine compounds assayed (oleuropein, hydroxytyrosol, tyrosol, as well as vanillic, p-hydroxybenzoic, sinapic, syringic, protocatechuic and cinnamic acids) inhibited L. plantarum growth at the concentration found in olive products. Oleuropein and tyrosol concentrations higher than 100 mM were needed to inhibit L. plantarum growth. On the other hand, sinapic and syringic acid showed the highest inhibitory activity since concentrations ranging from 12.5 to 50 mM inhibited L. plantarum growth in all the strains analyzed. Among the nine compounds assayed, only oleuropein and protocatechuic acid were metabolized by L. plantarum strains grown in the presence of these compounds. Oleuropein was metabolized mainly to hydroxytyrosol, while protocatechuic acid was decarboxylated to catechol. Metabolism of oleuropein was carried out by inducible enzymes since a cell-free extract from a culture grown in the absence of oleuropein was unable to metabolize it. Independent of their isolation source, the four L. plantarum strains analysed showed similar behaviour in relation to the inhibitory activity of phenolic compounds, as well as their ability to metabolize these compounds.  相似文献   

19.
High Intensity Light Pulses (HILP) represent an emerging processing technology which uses short (100-400 μs) light pulses (200-1100 nm) for product decontamination. In this study, model and real foods of differing transparencies (maximum recovery diluent (MRD), apple and orange juices and milk) were exposed to HILP in a batch system for 0, 2, 4 or 8 s at a frequency of 3 Hz. After treatment, inactivation of Escherichia coli or Listeria innocua was evaluated in pre-inoculated samples. Sensory and other quality attributes (colour, pH, Brix, titratable acidity, non-enzymatic browning, total phenols and antioxidant capacity (TEAC)) were assessed in apple juice. Microbial kill decreased with decreasing transparency of the medium. In apple juice (the most transparent beverage) E. coli decreased by 2.65 and 4.5 after exposure times of 2 or 4 s, respectively. No cell recovery was observed after 48 h storage at 4 °C. No significant differences were observed in quality parameters, excepting TEAC and flavour score, where 8 s exposure caused a significant decrease (p < 0.05). Based on these results, HILP with short exposure times could represent a potential alternative to thermal processing to eliminate undesirable microorganisms, while maintaining product quality, in transparent fruit juices.  相似文献   

20.
B.C.M. Salomão 《LWT》2007,40(4):676-680
Heat resistance of Neosartorya fischeri was studied in three different juices (apple, pineapple and papaya). The optimum heat activation temperature and time for the ascospores of the N. fischeri (growth for 30 days at 30 °C) was 85 °C for 10 min. Of the three juices tested, apple juice exhibited maximum 1/k values at 80, 85 and 90 °C (208.3, 30.1 and 2.0 min, respectively). The 1/k values for papaya juice (129.9, 19.0 and 1.9 min) and pineapple juice (73.5, 13.2 and 1.5 min) decreased with acidity and °Brix/acidity (ratio) level. The Z* values for apple, papaya and pineapple juices were 5, 5.5 and 5.9 °C, respectively. The sterilization F values (4-log reduction) for apple, pineapple and papaya juices were 56.3, 38.0 and 7.2 s, respectively. Considering the thermal treatments commercially applied to pineapple (96 °C/30 s) and apple juices (95 °C/30 s), it is concluded that such treatments will not guarantee that less than 1 ascospore in each set of 103 packs survive. Only the treatment applied to papaya juice (100 °C/30 s) will be sufficient because the F value is less than 30 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号