首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-amylose corn starches [(Hylon V (H5) and Hylon VII (H7)] were debranched with pullulanase, followed by autoclaving–storing cycles and drying in an oven (at 50 °C) or freeze-dryer. The samples were autoclaved at 123 and 133 °C and stored at 4 and 95 °C. Molecular weights of the samples decreased and resistant starch (RS) contents increased with increased debranching time. RS contents of H7 samples were higher than those of H5 samples. RS contents of oven-dried samples were higher than those of freeze-dried samples. Debranching caused decreases in DSC peak temperature (T p) and increases in enthalpy (ΔH) values of H5 and H7. Autoclaving at 133 °C caused higher ΔH values as compared to autoclaving at 123 °C. The solubility and water-binding values of autoclaved-only (control) and autoclaved–debranched (3–48 h) samples and the samples treated with autoclaving–storing cycles after debranching of both H5 and H7 were higher than those of their respective native starches. Debranching of starch samples affected the emulsion capacity of albumin adversely, but improved the emulsion stability of albumin. Cold viscosity values of freeze-dried samples were higher than those of oven-dried samples. Autoclaving–storing cycles after debranching caused decreases in peak, breakdown and final viscosity values.  相似文献   

2.
Aqueous suspensions (30 g/100 g) of Hylon V and Hylon VII high amylose corn starches were illuminated with linearly polarized visible light for 5, 15, 25 and 50 h. For each native and illuminated starch sample, weight average molecular weight, Mw, and hydrodynamic radius, Rg, of starch polysaccharide molecules were measured by high pressure size exclusion chromatography coupled with multiangle laser light scattering and refractometric detectors (HPSEC-MALLS-RI). Additionally, X-ray diffraction patterns, intrinsic viscosity, kinetic of alpha-amylolysis together with iodine binding properties and distribution of amylopectin structural units were established for each starch sample. Changes in molecular weight Mw of starch polysaccharide chains eluted under whole polysaccharide peaks and values of intrinsic viscosity of corresponding starch samples observed in the course of illumination indicated that illumination of both starches studied, with linearly polarized visible light (LPVL), induced first depolymerysation followed by repolymerisation reaction of starch polysaccharide chains. Illumination induced rearrangements of the molecular structure of polysaccharide chains of illuminated Hylon V and Hylon VII starches led to significant changes of their physicochemical properties as compared with native starches.  相似文献   

3.
The starches derived from two different cultivars of cassava were modified with acetic anhydride. The increase in swelling power and solubility of the cassava starch (CS) pastes treated with different acetic anhydride concentration could be attributed to easier hydration, resulting from reduction of interaction between starch chains due to the substitution. The transition temperatures (To, Tp and Tc) and enthalpy of gelatinisation (ΔH) of acetylated CS, were determined. The values were lower than those of native starches. Rheological properties of CS pastes (5% w/w) as a function of the degree of substitution were evaluated in dynamic shear force measurements. Magnitude of storage modulus (G′), loss modulus (G′′) and complex viscosity (Eta*) of acetylated CS pastes were determined also. Dynamic moduli (G′, G′′ and Eta*) values of acetylated sweet cultivar pastes were generally higher than those of native starch whereas the acetylated samples of the bitter cultivar were lower than those of native starch. The magnitudes of G′ were greater than those of G′′ and Eta* at all frequencies (ω). The fact that all the tan δ (ratio G′′/G′) values (0.7–0.48 and 0.25–0.44) were less than one is an indication that the samples are more elastic than viscous. The acetylated starches could find promising industrial uses in food products like Lemon curd and Mayonnaise and other non‐food applications.  相似文献   

4.
The starches isolated from normal and waxy corn varieties were hydrolyzed with hydrochloric acid (0.14 mol equivalent/L) and evaluated for physicochemical and functional properties. Acid thinning decreased the amylose content and swelling power but increased the solubility. The light transmittance of acid thinned (AT) starch pastes was higher than those of their native starches after similar storage intervals. The scanning electron microscopic observation demonstrated that the acid thinning did not cause any disruption of the granular crystalline structure. Native normal corn starches showed lower onset temperature (To) and peak temperature (Tp) as compared to their counterpart AT starches, whereas the reverse was observed for waxy corn starch. Enthalpy of gelatinization (ΔHgel) was lower in AT normal and waxy starches as compared to their native starches. The percentage of retrogradation (%R) was significantly higher for native corn starches as compared to their AT starches. A significant reduction in peak—(PV), trough—(TV), breakdown—(BV), final—(FV), and setback viscosity (SV) was observed by acid thinning, and the reduction was more pronounced in AT waxy starches. Among AT starches, AT waxy starch showed the lowest values of PV, TV, BV, FV and SV.  相似文献   

5.
To investigate the effects of seven starches made from different crop sources on noodle quality, Chinese dried noodles made from various reconstituted flours were prepared and analysed. Potato starch had better solubility and swelling power than the other starches, leading to higher water absorption, cooking loss and breakage ratio of the potato starch noodles. The correlation results unravelled that the cooking breakage ratio of noodles presented positive correlations with solubility, swelling power, peak viscosity (PV), trough viscosity (TV) and final viscosity (FV) values of starches. Besides, the adhesiveness of noodles showed a positive correlation with conclusion temperature (Tc) and setback viscosity (SV) values of starches. Moreover, the peak temperature (Tp) value of starches was negatively correlated with cooking loss; the granule size of starches had a positive correlation with noodles water absorption; and the peak time (PkT) value of starches represented positive relationships with noodles chewiness, shearing force and breaking strength.  相似文献   

6.
H.L. Lee 《LWT》2011,44(3):765-770
Sweet potato starches (SPS) were hydroxypropylated to evaluate the effect of molar substitution (MS, 0.042-0.153) on the rheological properties, thermal properties, freeze-thaw stability, paste clarity, and gel strength of hydroxypropylated sweet potato starches (HPSPS). The swelling power and solubility values of HPSPS were higher than those of native sweet potato starch (SPS) and increased with an increase in MS. The transition temperatures (To, Tp, and Tc), and enthalpy (ΔH) of gelatinization of HPSPS were lower than those of native SPS, and significantly decreased with an increase in MS.Rheological properties of HPSPS pastes were measured under the conditions of steady and dynamic shear. Their consistency index (K), apparent viscosity (ηa,100), Casson yield stress (σoc), complex viscosity (η*), and dynamic moduli (G′ and G″) values decreased with an increase in MS, while their flow behavior index (n) and tan δ (ratio of G″/G′) values increased. The dependence of apparent viscosity on temperature followed the Arrhenius model for all samples. The paste clarity of HPSPS paste was more pronounced with increasing MS of hydroxypropyl groups. The HPSPS gels showed lower gel strength and also better freeze-thaw stability with a significant decrease in syneresis (g/100 g) compared to native SPS.  相似文献   

7.
Cassava starch was cross‐linked with epichlorohydrin (EPI) at 45°C for 2 h in three different media which include water, water in the presence of a phase transfer catalyst (PTC) and N,N‐dimethylformamide (DMF). The products were characterized by determining their physicochemical, thermal and retrogradation properties. In aqueous medium, the use of a PTC, tetrabutylammonium bromide (TBAB) produced derivatives with higher degree of cross‐linking than those prepared without the use of the catalyst. The degree of cross‐linking was found to be higher using the same concentration of EPI when the reaction was carried out in DMF. At low levels of cross‐linking, the peak viscosity of the cross‐linked starches increased in comparison to that of the native starch. With increasing degree of cross‐linking, the peak viscosity showed a significant reduction. The swelling volume, solubility and light transmittance of the starch pastes were lower for the modified starches. The cross‐linked starches showed slightly reduced values for the gelatinization temperatures, Tonset, Tpeak and Tend. The enthalpy of gelatinization of the modified starches increased with increase in the degree of cross‐linking. The modified starches exhibited higher water‐binding capacities (WBC) than the native starch; but with increase in the degree of cross‐linking, there was a gradual decrease in WBC. The in vitro alpha amylase digestibility of the modified starches decreased gradually with increase in the level of cross‐linking.  相似文献   

8.
The characterisation of starches from kabuli and desi type chickpea seeds was investigated by monitoring amylose content, swelling power, solubility, synaeresis, water-binding capacity and turbidity properties. Total amylose and apparent amylsoe content were 31.80% and 29.93% for kabuli and 35.24% and 31.11% for desi, respectively. The shape of starch granules varied from round to oval or elliptic. The transition temperatures (To, Tp and Tc) were (62.237, 67.000 and 72.007 °C) and (59.396, 68.833 and 77.833 °C) for kabuli and desi starches, respectively. The ΔH value of kabuli type was higher than that of desi type. The crystal type of chickpea starches was a typical CA-type pattern. Breakdown and setback viscosity of kabuli starch were lower than those of desi starch, indicating high heat and shear stability. Kabuli starch showed a higher value of Mw (5.382 × 10g/mol) than desi starch (3.536 × 10g/mol). Both kabuli and desi starches belonged to low glycaemic starches from measuring starch fractions and hydrolysis index.  相似文献   

9.
Structural characteristics and digestibility of starches isolated from the kernels of two mango cultivars (Chausa and Kuppi) were studied and compared with those of a commercial normal corn starch. Mango kernel starches showed an A-type X-ray diffraction pattern, with relative crystallinities of 35.4% and 38.3%, respectively for Kuppi and Chausa cultivars. The structural characterisation obtained, using high performance size exclusion column chromatography connected to multi-angle laser light scattering and refractive index detectors (HPSEC-MALLS-RI), revealed that the mango kernel starches had lower molecular weight (Mw) and radius of gyration (Rg) of amylopectin and amylose compared to those of corn starch. The Mw of amylopectin for Chausa and Kuppi starches were 179 × 106 and 140 × 106 g/mol, respectively. The amounts of readily digestible starch (RDS) and slowly digestible starch (SDS) were lower for mango kernel starch than those of corn starch. Resistant starch (RS) contents in the mango kernel starches (75.6% and 80.0%, respectively) were substantially higher than those of corn starch (27.3%). The glycemic index (GI) values for mango kernel starches were 48.8 and 50.9 (for Chausa and Kuppi, respectively), whereas that of corn starch was 74.8, indicating that the mango kernel starch granules were highly resistant to digestion with significant contents of RS.  相似文献   

10.
Powdered preparations enriched in resistant starch (RS) were obtained from native and lintnerized (prolonged acid treatment) banana starches by consecutive autoclaving/cooling treatments. The preparations were tested for indigestible starch content, swelling and solubility properties, thermal analysis and pasting profile. The autoclaved samples had higher RS content than their parental counterparts, but the chemical modification (lintnerization process) allowed development of higher RS proportions (19%, dry matter basis, dmb). The autoclaved samples (RS‐enriched products) showed similar swelling values (α = 0.05) at the temperatures assessed. These RS‐rich products exhibited a lower solubility in water than the corresponding raw materials. The peak temperatures of the thermal transition were 155.5 and 145.8°C for native autoclaved and lintnerized autoclaved starch, respectively. These values indicate that RS products have a marked thermal stability. The pasting behavior of the RS products was less pronounced than that of the raw counterparts. Hence, their potential use as processed food ingredients should not impact final product viscosity. These RS‐enriched products appear suitable for the formulation of functional foods.  相似文献   

11.
Normal corn, Hylon V and Hylon VII starches were acid-methanol-treated at 25 °C for 1–30 days in methanol containing 0.36% HCl, and then annealing at 50 °C for 72 h in excess water. The rapid digestible starch (RDS), slow digestible starch (SDS) and resistant starch (RS) contents of starch before and after treatments were determined. The molecular structure, thermal properties, double helix content and relative crystallinity of starch were observed for elucidating the impacts of acid-methanol treatment and annealing, as well as the molecular structure, on the enzymatic resistance of starch. Results showed that the weight-average degree of polymerization of acid-methanol-treated corn starches ranged from 884 × 103 to 404, 778 × 103 to 299 and 337 × 103 to 250 anhydrous glucose units for normal corn, Hylon V and Hylon VII starches, respectively. Annealing increased the RS content of starch, and the increment of RS increased with decreasing molecular size of starch. Furthermore, the change in RS content after treatments depended on the content and weight-average chain length of amylose fraction of starch. The RS content of starch after treatments increased from 19.2 to 56.2%, 69.9 to 86.1%, and 73.1 to 89.1% for normal corn, Hylon V and Hylon VII starches, respectively. The gelatinization peak temperature and double helix content of starch increased after acid-methanol treatment or annealing. Results demonstrate that the degradation of starch, causing by acid-methanol treatment, enhances the mobility and realignment of starch chains in molecules during treatments and further increases the enzymatic resistance of starch granules.  相似文献   

12.
Starches from unripe fruits (mango, banana, and plantain) were acid modified to form different degrees of lintners with the objective to increase the slowly digestible starch (SDS) and RS contents. Molecular, thermal, and structural characteristics were evaluated. Mango starch showed higher susceptibility to acid hydrolysis than banana and plantain starches. The peak temperature of gelatinization (Tp) showed a decrease at low hydrolysis percentage, but at higher hydrolysis percentage the Tp increased. However, the enthalpy of gelatinization presented an increase with the hydrolysis percentage, but was not higher than its native counterpart. In general, the peak temperature and enthalpy of retrogradation increased with hydrolysis percentage due to formation of linear chains during the modification that promoted retrogradation. High performance size exclusion chromatography (HPSEC) analysis demonstrated the presence of multiple‐branches (DP = 96–109), single branched (DP = 28–31), and linear (DP = 16–18) polymers in the fruit starch lintners. The acid treatment (lintnerization) of mango starch had no effect on the SDS fraction, while for plantain and banana starches, the SDS content increased (6.14–35.4%) at low hydrolysis percentage (0–50%) followed by a decrease at higher days of hydrolysis. At higher hydrolysis percentage (70–80%) the RS content increased for the three fruit lintners.  相似文献   

13.
The effects of gelatinisation on slowly digestible (SDS) and resistant starch (RS) of native and modified canna starches were investigated. Starch slurries (10% w/w) were gelatinised at 100 °C for 5, 10, 20 and 40 min using a rapid visco analyzer (RVA). Significant change in the degree of gelatinisation (DG) values of all starch samples was observed during the initial 10 min of gelatinisation; after that the DG values increased gradually with gelatinisation time. The RS contents in all gelatinised starches decreased with increasing gelatinisation time, while the SDS values fluctuated. Chemical modification affected DG values as well as RS/SDS contents. The RS contents in 10% (w/w) acetylated, hydroxypropylated, octenyl succinylated and cross-linked canna starches gelatinised at 100 °C for 40 min were 26.6%, 32.0%, 45.3% and 19.8%, respectively, which were higher than that of the native starch (12.4%). Canna starch modified by crosslinking had the highest SDS content when gelatinised for 20-40 min. Modification of canna starch by heat-moisture treatment resulted in a lower content of RS for all treated samples. However, the Vt-HMT25 (canna starch containing moisture content of 25% during heat treatment) when gelatinised for 5-20 min contained a higher amount of SDS, compared to unmodified starch. The most effective modification method for RS and SDS formation was octenyl succinylation, where the sum of RS and SDS approached that of Novelose260.  相似文献   

14.
Mung bean starch was subjected to a range of heat-moisture treatments (HMT) based on different moisture contents (15%, 20%, 25%, 30%, and 35%) all heated at 120 °C for 12 h. The impact on the yields of resistant starch (RS), and the microstructure, physicochemical and functional properties of RS was investigated. Compared to raw starch, the RS content of HMT starch increased significantly, with the starch treated at 20% moisture having the highest RS content. After HMT, birefringence remained at the periphery of the granules and was absent at the center of some granules. The shape and integrity of HMT starch granules did not change but concavity was observed under scanning electronic microscopy. Apparent amylose contents of HMT starch increased and the HMT starch was dominated by high molecular weight fraction. Both the native and HMT starches showed A-type X-ray diffraction pattern. Relative crystallinity increased after HMT. The gelatinization temperatures (To, Tp, and Tc), gelatinization temperature range (Tc–To) and enthalpies of gelatinization (ΔH) increased significantly in HMT starch compared to native starch. The solubility increased but swelling power decreased in HMT starches. This study clearly shows that the HMT exhibited thermal stability and resistance to enzymatic hydrolysis owing to stronger interactions of starch chains in granule.  相似文献   

15.
African yam bean (Sphenostylis stenocarpa) starch was subjected to heat moisture treatments at 18% (HMT-18), 21% (HMT-21), 24% (HMT-24), 27% (HMT-27) and excess (Annealing) moisture levels. Proximate chemical composition of the starch samples revealed that the moisture content of the starches ranged between 6.7% and 12.5%. Following modification of the native starch, there was a reduction in the moisture level of the heat moisture treated starches from HMT-18 to HMT-27. However, the annealed starch (HMT-ANN) retained higher moisture content compared to native starch (AYB-Native). The carbohydrate, protein, ash, amylose and fat content reduced with all the forms of heat treatments. At the temperature range studied (60–90 °C), increasing level of heat moisture treatments reduced the solubility and swelling capacity. pH also exert a profound effect both on the solubility and the swelling of the starch. Increasing degree of alkalinity increased both solubility and swelling capacity. In the native and modified starch samples, replacement of the wheat flour by the starch resulted in increased alkaline water retention of the blends. Water absorption capacity of the starch increased with the severity of moisture treatments, while the oil absorption capacity decreased. Apart from HMT-18, there was improved gel forming capacity of all the other heat-modified starches.Pasting temperature increased after hydrothermal modifications, whereas peak viscosity (Pv), Hot Paste Viscosity (Hv), setback and breakdown values all reduced after heat moisture treatments. All the starches were of type-B viscosity.Differential scanning calorimetry studies revealed that heat moisture treatment shifted the onset temperature (To), peak temperature(Tp) and conclusion temperature (Tc) to higher values. The gelatinisation temperature of the annealed starch was comparable to native starch. In addition, gelatinisation band of the native starch increased progressively from HMT-18 to HMT-27. Heat moisture treatment reduced the gelatinsation enthalpy (ΔH), while the enthalpy of retrogradation(ΔHr) increased with the storage time of the gelatinised starch. Retrogradation enthalpy of the heat moisture conditioned starches were lower than the value obtained for the native starch.X-ray diffraction studies of the starch indicated that all the starch samples showed the type-C diffraction pattern. Differences were however observed in their degree of crystallinity. Native starch exhibited the lowest crystallinity (20%) while annealed starch had the highest crystallinity (27%)Microscopy studies revealed surface indentation, formation of groves in the central region, folding of starch granules and formation of doughnut-like appearance in some of the starch samples.  相似文献   

16.
以绿豆淀粉为原料,采用湿热处理制备颗粒态抗性淀粉,并研究其颗粒形貌、直链淀粉含量、溶胀度、黏度及结晶性质等。试验表明:淀粉经过湿热处理后,抗性淀粉含量显著提高;湿热处理淀粉仍保持完整的颗粒外观,属于颗粒态抗性淀粉,部分淀粉颗粒表面出现了裂纹和凹坑,偏光十字强度有所减弱;湿热处理淀粉的直链淀粉含量明显增加,而溶解度、膨胀度和峰值黏度下降,淀粉糊化变得困难;X-射线衍射图谱表明原淀粉和湿热处理淀粉都为"A"型结晶,且湿热处理淀粉在15.2°、17.4°、22.9°左右的衍射峰强度有所加强。  相似文献   

17.
The molecular size of amylopectin (AP) and amylose (AM), AP chain length distribution, crystallinity and granular structure (morphology and granule size distribution) of five wild type potato starches (wtps), five AM free potato starches (amfps), four high-AM potato starches (haps), one wild type cassava starch (wtcs) and one AM free cassava starch (amfcs) were investigated and related to their gelatinisation characteristics. Starches with higher levels of short chains [degree of polymerisation (DP) 6–9 and DP 10–14)] had lower gelatinisation onset (To), peak (Tp) and conclusion (Tc) temperatures, whereas higher contents of longer chains (DP 18–25 and DP 25–80) led to higher gelatinisation temperatures. Gelatinisation enthalpies (ΔH) increased with degree of crystallinity. The granules of wtps were larger than those of amfps and haps, respectively. No differences in morphology were observed between wtps and amfps granules, but the haps granules had more irregular surfaces and showed multi-lobed granules.  相似文献   

18.
J.A. Stahl  V.C. Bochi  L.C. Gutkoski 《LWT》2007,40(7):1206-1214
Physicochemical properties of pinhão (seeds of Paraná pine) starch phosphates were evaluated and compared to corn starch phosphates. The phosphorylation process used yielded starch phosphates with three different degrees of substitution (DS): low (0.015), medium (0.07) and high (?0.12). Medium and high DS starch phosphates had higher cold water binding capacity, swelling power, and paste clarity, but lower paste syneresis (at 5 °C and after freeze-thaw cycles) than native starches (P<0.05). Low, medium, and high DS corn starches had higher solubility than native starches (3.8-, 8-, and 6-fold higher; P<0.05), but the solubility of pinhão starch increased only in medium DS starch phosphates (3-fold higher; P<0.05). Low DS starch phosphates had viscosity curves similar to native starches. In contrast, medium and high DS starch pastes had peak viscosity at room temperature, reached the minimum viscosity when heated to 95 °C, and had low setback.  相似文献   

19.
Starches separated from different potato cultivars were modified using two different cross‐linking agents: epichlorohydrin (EPI) and phosphoryl chloride (POCl3) at different concentrations (1.0 and 2.0 g kg?1 POCl3; 2.5, 5.0 and 10 g kg?1 EPI). Differential scanning calorimetry, rheological and retrogradation measurements were performed to characterise the influence of cross‐linking on the properties of potato starches. Cross‐linking considerably reduced swelling power, solubility, water‐binding capacity and paste clarity. The decrease became greater as the reagent concentration increased. The starches treated with 1.0 g kg?1 POCl3 exhibited exceptionally higher swelling power than their counterpart native starches. Neither cross‐linking agent caused any change in morphology of the starch granules. Studies on the phase transitions associated with the gelatinisation showed significantly higher values for the onset temperature (To), peak temperature (Tp), conclusion temperature (Tc) and enthalpy of gelatinisation (ΔHgel) for the cross‐linked starches than the native starches. Starches treated with both the reagents showed lower peak storage modulus (G′) and loss modulus (G″) than their native counterparts. The tendency of the starch pastes towards retrogradation increased considerably with increases in storage duration. However, the starches treated with 1 g kg?1 POCl3 exhibited much lower syneresis than the other cross‐linked starches. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
Comparative studies on acid hydrolysis of jicama and maize starch were carried out using concentrations of hydrochloric acid of 1.5%, 3.0%, and 4.5% (w/v), for 3 and 6 h, at 40°C. Native maize and jicama starches showed important morphological, thermal, and structural differences from those of tubers and cereals which potentially offer diverse industrial applications. Jicama starch showed low amylose content (12%) and small size of starch granules. Due to these characteristics, jicama starch was more susceptible to degradation during hydrolysis process than maize starch. Under the experimental conditions employed, the acid degradation was not particularly severe, as shown by scanning electronic microscopy analysis which showed small degraded zones and similar X-ray patterns in both starches. However, jicama starch was more susceptible to acid hydrolysis than maize starch, as revealed by the considerable increase in water solubility index, damaged starch, and crystallinity values. Also, the higher susceptibility of jicama starch than maize starch to the hydrolysis conditions was reflected in the sugar content release during hydrolysis. The relative crystallinity of hydrolyzed maize starches decreased during hydrolysis, while those of hydrolyzed jicama starches increased attributable to the lower amylose content of jicama starch in relation to maize starch. Maize and jicama hydrolyzed starches showed low viscosity values with relation to their native starch counterparts. However, native jicama starch showed lower viscosity values than maize starch, suggesting a lower internal stability of the starch granules during hydrolysis. Both native and hydrolyzed maize starches showed higher enthalpy, T o, T p, and T c values than jicama starch and the broadening of the endotherms decreased during the hydrolysis of both starches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号