首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Reverse osmosis process for the concentration of black currant juice was carried using AFC-99 tubular membrane at 30 °C and 45 bar. The contents of selected flavonols and anthocyanins were analyzed after centrifugation; enzyme treatment by Panzym Super E and by Rohapect berry followed by centrifugation; and ultrafiltration black currant juices and juice concentrates. The total soluble solid (TSS) content of the juices increased from the initial 17.6–17.9 °Brix to 24–24.8 °Brix in the case of the centrifuged juice in the concentration process. Similarly, it increased from 14.5–15.5 °Brix to 23.1–23.4 °Brix for the Panzym Super E treated juice, and from 16.1–16.9 °Brix to 22.5–23.1 °Brix for the Rohapect berry treated black currant juices. The ultrafiltered juice had the lowest initial TSS content between 14.1 and 14.9 °Brix and it increased to 22.1–23.1 °Brix. The average permeate fluxes during the concentration process were 7.3 L m−2 h−1 for the centrifuged juice, 11.9 L m−2 h−1 for the Panzym Super E treated juice, 9.2 and 13.1 L m−2 h−1 for the Rohapect berry treated and ultrafiltered juice, respectively. Analysis indicated that the enzymatic treatment resulted in the increase of anthocyanin and flavonol content of the juices. The centrifugation process decreased the amount of anthocyanins and flavonols to some extent. The juice clarified by ultrafiltration had significantly lower concentrations of anthocyanins and flavonols, while the juices treated by Panzym Super E had the highest levels of these flavonoids. This study recommends enzymatic pre-treatment by Panzym Super E, since it improves the permeate flux in reverse osmosis during the concentration process, and results in a juice concentrates highest in anthocyanins and flavonols.  相似文献   

2.
The industrial thermal processing of foods may have a severe impact on the sensorial and nutritional properties of the final product. Membrane technologies have been extensively studied as alternative processes. Forward osmosis (FO) is a promising membrane technology to be used in food industries. The only driving force of the process is the osmotic pressure difference between the two solutions that flow in counter-current mode on opposite sides of a permeable membrane. Thus, the main advantages of FO, compared to both thermal and conventional membrane processing, include low hydraulic pressure, low treatment temperature, low fouling tendency, high solids content processing capability and easy scale-up. A detailed, up-to-date summary of potential FO applications for concentrating liquid foods is presented in this review article. The effect of the main process parameters on the filtration performance and their impact on the sensorial and nutritional factors of the final product are described and discussed for a broad spectrum of foods.  相似文献   

3.
The production of high quality concentrated blood orange juice according to a new integrated membrane process, alternative to thermal evaporation, was evaluated in terms of preservation of the total antioxidant activity and of the bioactive antioxidant components of the juice (ascorbic acid, anthocyanins, hydroxycinnamic acids, flavanones). The process was based on the initial clarification of freshly squeezed juice by ultrafiltration (UF); the clarified juice was successively concentrated by two consecutive processes: first reverse osmosis (RO), used as a pre-concentration technique (up to 25–30 °Bx), then osmotic distillation (OD), up to a final concentration of about 60 °Bx. During the concentration process of the liquid fractions, a slight decrease of total antioxidant activity (TAA) was observed (−15%), which was due to the partial degradation of ascorbic acid (ca. −15%) and anthocyanins (ca. −20%). Nevertheless, this degradation was lower than that observed with thermally concentrated juice: TAA, −26%; ascorbic acid, −30%, anthocyanins, −36%. The possibility to operate at room temperature allowed reduction in thermal damage and energy consumption. On the basis of these results, the integrated membrane process may be proposed as a valuable alternative to obtain high quality concentrated juice, as the final product still showed a very high antioxidant activity and a very high amount of natural bioactive components, showing a brilliant red colour and a pleasant aroma, characteristics that were significantly lost during traditional thermal evaporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号