首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Alumina-titanium diboride nanocomposite (Al2O3-TiB2) was produced using mixtures of titanium dioxide, acid boric and pure aluminum as raw materials via mechanochemical process. The phase transformation and structural characterization during mechanochemical process were utilized by X-ray diffractometry (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analyses (TG-DTA) techniques. A thermodynamic appraisal showed that the reaction between TiO2, B2O3 and Al is highly exothermic and should be self-sustaining. XRD analyses exhibited that the Al2O3-TiB2 nanocomposite was formed after 1.5 h milling time. The results indicate that increasing milling time up to 40 h had no significant effect other than refining the crystallite size.  相似文献   

2.
Highly dense n-type Bi2Te3-based thermoelectric materials dispersed with x vol.% γ-Al2O3 nanoparticles (x = 0, 0.4, 1.0, 1.5) were fabricated by spark plasma sintering method. The effects of γ-Al2O3 addition on microstructure and the thermoelectric properties were studied. It was found that γ-Al2O3 nanoparticles locate both at grain boundaries and inside Bi2Se0.3Te2.7 grains. The nanoparticles induce both potential barrier scattering effect and additional phonon scattering effect, which simultaneously enhance the Seebeck coefficient and reduce the lattice thermal conductivity of the nanocomposites in the measured temperature range of 300-500 K, respectively. The maximum dimensionless figure of merit (ZTmax) reaches up to 0.99 for the sample with x = 1.0 at 400 K, which is 35% improvement over the Bi2Te3-based matrix. More importantly, the average ZT value of the sample increases from 0.65 to 0.91 in the temperature range 300-500 K, making the nanocomposites much more applicable in cooling and power generation.  相似文献   

3.
In-situ plasma spraying (IPS) is a promising process to fabricate composite coatings with in-situ formed thermodynamically stable phases. In the present study, mechanically alloyed Al-12Si, B2O3 and TiO2 powder was deposited onto an aluminum substrate using atmospheric plasma spraying (APS). It has been observed that, during the coating process, TiB2 and Al2O3 are in-situ formed through the reaction between starting powders and finely dispersed in hypereutectic Al-Si matrix alloy. Also, obtained results demonstrate that in-situ reaction intensity strongly depends on spray conditions.  相似文献   

4.
Alumina matrix composites containing 5 and 10 wt% of ZrO2 were sintered under 100 MPa pressure by spark plasma sintering process. Alumina powder with an average particle size of 600 nm and yttria-stabilized zirconia with 16 at% of Y2O3 and with a particle size of 40 nm were used as starting materials. The influence of ZrO2 content and sintering temperature on microstructures and mechanical properties of the composites were investigated. All samples could be fully densified at a temperature lower than 1400 °C. The microstructure analysis indicated that the alumina grains had no significant growth (alumina size controlled in submicron level 0.66-0.79 μm), indicating that the zirconia particles provided a hindering effect on the grain growth of alumina. Vickers hardness and fracture toughness of composites increased with increasing ZrO2 content, and the samples containing 10 wt% of ZrO2 had the highest Vickers hardness of 18 GPa (5 kg load) and fracture toughness of 5.1 MPa m1/2.  相似文献   

5.
Sintered Mo with the addition of La2O3/MoSi2 was prepared via the process of solid–solid doping + powder metallurgy. X-ray diffraction experiment, hardness test, three-point bending test and high-temperature tensile test were carried out to characterize the samples. The XRD pattern of a typical sample shows that the sintered Mo was mainly composed of Mo, La2O3 and Mo5Si3. Mo5Si3 was probably formed through the reaction between MoSi2 and the Mo matrix. Densities and fracture toughnesses of both doped Mo and pure Mo were measured and contrasted. Sintered Mo with the addition of 0.2 wt% La2O3/MoSi2 has the highest toughness, while more addition of La2O3/MoSi2 has smaller effect on improving toughness or even embrittles Mo. The results of three-point bending test and high-temperature tensile test show that the bending strength and high-temperature tensile strength of doped Mo are both higher than those of pure Mo. The formation of Mo5Si3 improves the high-temperature strength. The La2O3/Mo5Si3 dispersed in the Mo matrix refined the grains, and thus strengthened the Mo matrix by dispersion strengthening and grain refinement.  相似文献   

6.
Thin films of lithium cobalt oxide were deposited on Pt or Pt/Ti/quartz glass substrates by radio frequency (RF) magnetron sputtering at the substrate temperatures from room temperature to 500 °C. As the substrate temperature increased, the film structure changed from amorphous structure to crystallinity with a strong (003) texture as characterized by X-ray diffraction. The surface morphology and cross-section were observed using scanning electron microscopy. It was found that the films tended to crack at a high substrate temperature. Charge-discharge tests of these films were conducted and compared. The different electrochemical characteristics of these films were attributed to the modified crystallography, morphology, and thermal stress. The LiCoO2 film deposited at 400 °C showed a well-defined 4.0 V voltage plateau on charge and a 3.9 V plateau on discharge, and delivered 54.5 μAh/cm2 μm at the first discharge capacity, with good cycling performance, giving evidence that such films could be used as the thin film cathodes for lithium microbatteries.  相似文献   

7.
A mixture of Ti/Si/TiC/diamond powders was employed to fabricate the Ti3SiC2 bonded diamond composite using the spark plasma sintering-reactive synthesis method. The addition of diamond does not inhibit the synthesis of Ti3SiC2 in the sintered product. In the matrix Ti3SiC2 grains developed lamellar morphology with an average length size of 5-10 μm. Ti3SiC2 matrix displays good pullout strength with diamond, and the Ti3SiC2 bonded diamond material exhibits good wear resistance.  相似文献   

8.
The effects of K2O and Li2O-doping (0.5, 0.75 and 1.5 mol%) of Fe2O3/Cr2O3 system on its surface and the catalytic properties were investigated. Pure and differently doped solids were calcined in air at 400-600 °C. The formula of the un-doped calcined solid was 0.85Fe2O3:0.15Cr2O3. The techniques employed were TGA, DTA, XRD, N2 adsorption at −196 °C and catalytic oxidation of CO oxidation by O2 at 200-300 °C. The results revealed that DTA curves of pure mixed solids consisted of one endothermic peak and two exothermic peaks. Pure and doped mixed solids calcined at 400 °C are amorphous in nature and turned to α-Fe2O3 upon heating at 500 and 600 °C. K2O and Li2O doping conducted at 500 or 600 °C modified the degree of crystallinity and crystallite size of all phases present which consisted of a mixture of nanocrystalline α- and γ-Fe2O3 together with K2FeO4 and LiFe5O8 phases. However, the heavily Li2O-doped sample consisted only of LiFe5O8 phase. The specific surface area of the system investigated decreased to an extent proportional to the amount of K2O and Li2O added. On the other hand, the catalytic activity was found to increase by increasing the amount of K2O and Li2O added. The maximum increase in the catalytic activity, expressed as the reaction rate constant (k) measured at 200 °C, attained 30.8% and 26.5% for K2O and Li2O doping, respectively. The doping process did not modify the activation energy of the catalyzed reaction but rather increased the concentration of the active sites without changing their energetic nature.  相似文献   

9.
Monodisperse core-shell structured FeNi3-SiO2 composite nanoparticles (NPs) were synthesized by a facile hydrazine reduction combined modified Stöber method. SEM and TEM analysis shows that FeNi3 cores are composed of small primary nanocrystals and are coated by amorphous SiO2 layer. As-prepared FeNi3-SiO2 nanocomposites exhibit typical soft magnetic properties. The permeability spectra vary with the contents of SiO2. When the SiO2 content is 10 wt%, the real part μ′ of the permeability reaches about 10 and is almost independent of frequency in the frequency range up to 1 GHz. And the imaginary part μ′′ remains very low. This paper presents a facile approach to fabrication of novel soft magnetic materials for high-frequency applications.  相似文献   

10.
以La2O3粉、Al粉、CuO粉为反应物原料、纯铜为基体,采用原位合成技术和近熔点铸造法制备颗粒增强Cu基复合材料,研究La2O3对Al-CuO体系制备的Cu基复合材料组织及性能的影响。结果表明:添加La2O3可获得纳米Al2O3颗粒,且弥散分布于Cu基体中,制备的材料组织更加细小、均匀,其材料的电导率及摩擦磨损性能明显提高。当添加0.6%wtLa2O3,复合材料的电导率达到90.2%IACS,磨损量达到最小,相比未添加La2O3,其导电率提高10.1%,磨损量减小36.6%。  相似文献   

11.
Laminated ZrB2-SiC ceramics with ZrO2 interface layers were successfully prepared by tape casting, laminating and hot pressing. The flexural strength and fracture toughness are 561 ± 20 MPa and 14.4 ± 0.3 MPa m1/2 for parallel direction, and 432 ± 18 MPa and 5.8 ± 0.3 MPa m1/2 for perpendicular direction. The fracture toughness for parallel direction is improved significantly compared to monolithic ZrB2-SiC ceramics. The toughening mechanism was attributed to the deflection and branch of the crack and the new microcracks, which would increase the propagation path and fracture work.  相似文献   

12.
采用溶液前驱体等离子喷涂(solution precursor plasma spray,SPPS)方法制备了La2Ce2O7涂层。通过SEM、XRD、EDS、激光导热仪对制备的涂层进行了表征,应用STA-FTIR-QMS联用技术对La2Ce2O7干燥前驱体的分解过程进行了研究,分析了前驱体的分解温度及分解过程,从而确定了喷涂温度为450℃。通过正交实验确定了雾化压力0.1MPa、电流700A、送液速率23 mL/min为最佳喷涂工艺参数,用此参数喷涂20遍制备的La2Ce2O7涂层厚度达到121μm,相对密度为92.4%,硬度为2.1 GPa。结果表明,得到了热导率较低、元素分布均匀、具有萤石结构的La2Ce2O7热障涂层。  相似文献   

13.
探究了使用大气等离子喷涂设备制备适合热喷涂使用的球形CaF2/BaF2共晶粉末的可能性。68%BaF2、32%CaF2粉末(质量分数)经过1 100℃真空烧结后,形成致密的块状氟化物共晶。机械破碎后的氟化物共晶经过等离子焰流重熔后得到了球形的氟化物共晶。使用F14-1流动性和松装密度测定仪测量球化前后粉末的流动性和松装密度。采用扫描电子显微镜,XRD表征球化前后粉末的形貌和物相组成。结果表明:球化后的粉末呈现较好的球形,球化后粉末的流动性和松装密度较球化前也有较大的改善:球化后共晶粉末的流动时间为55.20s/50g,松装密度为1.89g/cm3;另外,球化后共晶粉末还表现出良好的高温润滑性能:含有10%CaF2/BaF2共晶(质量分数)的镍基涂层在600℃和800℃的平均摩擦因数都小于0.3。  相似文献   

14.
Nanocomposites containing nanocrystals of Te2NiMnO6 were synthesized by suitable heat treatment of a glass with composition 2 TeO2·NiO·MnO (molar ratio). The crystallites had dimensions in the range 17-41 nm. X-ray diffraction data of the specimens were analyzed by using a TREOR computer programme. Lattice parameters extracted by this method indicated that the crystal symmetry was monoclinic. The nanocomposites exhibited weak ferromagnetism in the temperature range 2-300 K. They also showed ferroelectric hysteresis at room temperature with a remanent polarization of 0.015 μC/cm2. The specimens showed a magnetodielectric (MD) behavior with dielectric constant increasing as a function of applied magnetic field. The MD parameter obtained in the present system was 0.55%.  相似文献   

15.
TiO2 thin films were deposited on silicon wafer substrates by low-field (1 < B < 5 mT) helicon plasma assisted reactive sputtering in a mixture of pure argon and oxygen. The influence of the positive ion density on the substrate and the post-annealing treatment on the films density, refractive index, chemical composition and crystalline structure was analysed by reflectometry, Rutherford backscattering spectroscopy (RBS) and X-ray diffraction (XRD). Amorphous TiO2 was obtained for ion density on the substrate below 7 × 1016 m− 3. Increasing the ion density over 7 × 1016 m− 3 led to the formation of nanocrystalline (~ 15 nm) rutile phase TiO2. The post-annealing treatment of the films in air at 300 °C induced the complete crystallisation of the amorphous films to nanocrystals of anatase (~ 40 nm) while the rutile films shows no significant change meaning that they were already fully crystallised by the plasma process. All these results show an efficient process by low-field helicon plasma sputtering process to fabricate stoichiometric TiO2 thin films with amorphous or nanocrystalline rutile structure directly from low temperature plasma processing conditions and nanocrystalline anatase structure with a moderate annealing treatment.  相似文献   

16.
以大气等离子喷涂工艺制备的Al_2O_3陶瓷涂层为模板,利用陶瓷涂层中存在的孔隙和微裂纹,采用水热反应在其内部原位合成具有润滑特性的MoS_2,制备出Al_2O_3/MoS_2的复合涂层。结果表明,通过水热反应在陶瓷涂层原有的微观缺陷中成功合成了MoS_2,合成的MoS_2固体粉末呈类球形状,并且这球状的粉末是由纳米片层状的MoS_2搭建组成的。摩擦试验结果表明,与纯Al_2O_3涂层相比,复合涂层中由于MoS_2润滑膜的形成,其摩擦因数和磨损率都显著降低,且载荷越大,复合涂层的摩擦性能越好。  相似文献   

17.
为了确定高钛型钒钛磁铁矿烧结过程中铁酸钙的生成是受TiO2还是TiO2和CaO形成的CaTiO3影响,首先利用Fe2O3和CaO的纯试剂合成了铁酸钙,并研究了TiO2和CaTiO3对钛铁酸钙 (FCT) 形成的影响。在Factsage 7.0软件进行热力学计算的基础上,通过在空气气氛下进行烧结,获得了在1023~1423 K温度范围内、不同烧结时间的不同样品。通过X射线衍射和扫描电镜-能谱分析等表征手段,对烧结样品的物相转变和微观结构变化进行了表征。发现FCT的形成过程主要分为2个阶段:前一阶段为1023~1223 K温度范围内Fe2O3与CaO之间的反应,合成产物为Ca2Fe2O5,反应方程式为“Fe2O3(s)+ 2CaO(s)= Ca2Fe2O5(s)”;后一阶段为1223~1423 K温度范围内Ca2Fe2O5和Fe2O3的反应,主要产物为CaFe2O4,反应为“Ca2Fe2O5(s)+ Fe2O3(s)= 2CaFe2O4(s)”,该阶段尤其是温度为1423 K时,反应速率显著加快,随温度的升高CaTiO3显著增加。然而,Ti元素在铁酸钙中的固溶很难实现,TiO2与铁酸钙之间的反应不是形成FCT的有效途径。随着保温时间的延长,CaTiO3和FCT相界中Fe元素含量增加。FCT主要是通过Fe组分在CaTiO3中固溶形成的,主要反应是“Fe2O3+CaTiO3(s)=FCT(s)”。  相似文献   

18.
通过喷雾造粒和高温焙烧制备Ni_2Cr(BO_3)O_2粉末后利用等离子喷涂得到一种高红外发射涂层,并研究了该种涂层的红外发射性能。SEM观察涂层的表面、断面形貌,发现涂层与基体结合紧密、无脱落;XRD对焙烧后的粉末物相组成进行了表征,主要以Ni_2Cr(BO_3)O_2为主。对涂层红外波段发射率的测试表明,在0.76~2.5μm波段的发射率为0.896、2.5~14μm波段发射率为0.925,具有优异的红外发射性能。Ni_2Cr(BO_3)O_2晶胞内的畸变、非对称性以及电子转移跃迁是导致Ni_2Cr(BO_3)O_2这种材料具有高红外发射率的主要原因。Ni_2Cr(BO_3)O_2涂层能够经受37次"900℃~水冷"热震循环。该种涂层由于其高红外发射性能、优异的耐热震性能和热稳定性能而具有较高的实用价值。  相似文献   

19.
The Gd(Ni1/2Zr1/2)O3 (GNZ) ceramic is synthesized by the solid-state reaction technique. The X-ray diffraction pattern of the sample shows monoclinic phase at room temperature. The dielectric dispersion of the material is investigated in the temperature range from 303 K to 673 K and in the frequency range from 100 Hz to 1 MHz. The relaxation peak is observed in the frequency dependence of the loss tangent. The relaxation time at different temperatures is found to obey Arrhenius law having activation energy of 1.1 eV which indicates the hopping of ions at the lattice site and may be responsible for the dielectric relaxation of GNZ. The scaling behaviour of loss tangent suggests that the relaxation mechanism is temperature independent. The frequency dependent conductivity spectra follow the power law. In the impedance formalism, the Cole-Cole model is used to study the relaxation mechanism of GNZ.  相似文献   

20.
The reaction mechanism and CuInSe2 formation kinetics using a solid state reaction from Cu2Se and In2Se3 powders synthesized using a heating up process were investigated using X-ray diffractomy (XRD) and transmission electron microscopy (TEM). It was observed that the CuInSe2 phase increased gradually, accompanied with a decrease in γ-In2Se3 with no intermediate phase as the calcination temperature and soaking time were increased. The reaction kinetics was analyzed using the Avrami and polynomial kinetic model, suggesting that CuInSe2 formation from Cu2Se and In2Se3 powders follows a diffusion-controlled reaction with an apparent activation energy of about 122.5-182.3 kJ/mol. Cu2Se and In2Se3 phases react and directly transform into CIS without the occurrence of any intermediate phase and the size of the newly formed CuInSe2 crystallites was close to that of the Cu2Se reactant particle based on the TEM results, which indicated that the solid reaction kinetics may be dominated by the diffusion of In3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号