首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present investigation electroless ternary NiWP-Al2O3 composite coatings were prepared using an electroless nickel bath. Second phase alumina particles (1 µm) were used to codeposit in the NiWP matrix. Nanocrystalline ternary NiWP alloys and composite coatings were obtained using an alkaline citrate based bath which was operated at pH 9 and temperature at 88 ± 2 °C. Mild steel was used as a substrate material and deposition was carried out for about 4 h to get a coating thickness of 25 ± 3 µm. Metallographic cross-sections were prepared to find out the coating thickness and also the uniform distribution of the aluminum oxide particles in NiWP matrix. Surface analysis carried out on both the coatings using scanning electron microscope (SEM) showed that particle incorporation in ternary NiWP matrix has increased the nodularity of composite coatings compared to fine nodular NiWP deposits. Elemental analysis of energy dispersive X-ray (EDX) results showed that codeposited P and W elements in plain NiWP deposit were 13 and 1.2 wt.%, respectively. There was a decrease in P content from 13 to 10 wt.% with a marginal variation in the incorporated W (1.01 wt.%) due to the codeposition of aluminum oxide particles in NiWP matrix. X-ray diffraction (XRD) studies carried out on as-plated deposits showed that both the deposits are X-ray amorphous with a grain size of around 3 nm. Phase transformation studies carried out on both the coatings showed that composite coatings exhibited better thermal stability compared to plain NiWP deposits. From the XRD studies it was found that metastable phases such as NiP and Ni5P2 present in the composite coatings heat treated at major exothermic peak temperature. Annealed composite coatings at various temperatures revealed higher microhardness values compared to plain NiWP deposits.  相似文献   

2.
A new processing concept has been developed to produce nano-structured metal-matrix composite coatings. This method combines sol-gel and electroless plating techniques to prepare highly dispersive oxide nano-particle reinforced composite coatings. Transparent TiO2 sol was added into the standard electroless plated Ni-P solution at a controlled rate to produce Ni-P-TiO2 nano-composite coatings on Mg alloys. The coating was found to have a crystalline structure. The nano-sized TiO2 particles (∼ 15 nm) were well dispersed into the Ni-P coating matrix during the co-deposition process. This technique can effectively avoid the agglomeration of nano-particles in the coating matrix. As a result, the microhardness of the composite coatings were significantly increased to ∼ 1025 HV200 compared to ∼ 710 HV200 of the conventional composite coatings produced with solid particle mixing methods. Correspondingly, the wear resistance of the new composite coatings was also greatly improved.  相似文献   

3.
This paper describes an investigation on the effect of α-Al2O3 coating on the interface between nickel and SiC particle. Uniform, dense and well-adhered α-Al2O3 coatings were obtained on the surface of SiC particles by sol–gel technology. The nickel-based composites reinforced with α-Al2O3-coated SiC particles (CSp) or uncoated SiC particles (UCSp) prepared by composite electrodeposition were heated at 600 °C to study the reactivity and the resulting interfaces. The results showed that the Ni/CSp composites presented excellent thermal stability without interfacial reaction, while nickel silicide formed in the Ni/UCSp composites. It indicated that high-temperature interfacial reaction between SiC particles and nickel matrix was efficiently inhibited by the α-Al2O3 coatings. Moreover, great differences of the local mechanical properties of interfaces were observed by the nanoindentation characterization.  相似文献   

4.
In the field of thermal shielding for aerospace applications Cf/SiC composites are raising great interest, provided that they are protected from oxidation by suitable coatings. Conversely, ultra high temperature ceramics, and in particular HfB2, are among the best oxidation resistant materials known. A coating made of a HfB2/SiC composite (20% weight SiC) was tested as an oxidation protection on a Cf/SiC composite. The composite was produced by Polymer Impregnation Pyrolysis (PIP), which is a simple and low cost method; the coating was applied by painting a slurry on the surface of the composite and by heat treating. The thermal behaviour was studied by thermo-gravimetric analysis, and mechanical tests were conducted before and after oxidation. The HfB2/SiC composite seems to effectively protect the underlying Cf/SiC composite, with a mechanical strength reduction of only 20% after 30 min at 1600 °C, even if some weight loss due to partial carbon fibre damage is observed. A first analysis of thermal cycling in oxidizing environment suggested that the HfB2/SiC coating reduces continual damage thanks to the sealing effect of the glassy surface layer.  相似文献   

5.
The coating Cr3C2 with 50 wt.% Ni20Cr deposited by high velocity oxy-fuel (HVOF) spray process was characterized in detail to investigate the effect of annealing on the solid particle erosion behaviour and understand the influence of the binder properties. Systematic characterization of the coating was carried out using electron microscopy (scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA)), X-ray diffraction (XRD), microindentation and nanoindentation techniques. The solid particle erosion tests were done on the as-sprayed coating and coatings annealed at 400 °C, 600 °C and 800 °C using silica erodent particles. The coefficient of restitution of the coated samples was also measured by WC ball impact tests to simulate dynamic impacts. The as-sprayed coating consisted of primary carbides and binder that was a mixture of amorphous and nanocrystalline phases. Annealing leads to recrystallisation of binder phase and precipitation of secondary carbides. The coating hardness and binder ductility change with annealing temperature. The erosion resistance improves with annealing up to 600 °C. In the as-sprayed coating, the amorphous phase, inter-splat boundaries and the elastic rebound characteristics affect the erosion response. While in the case of the coating annealed at 600 °C, the presence of ductile crystalline binder, fine carbide precipitates and embedment of erodent particles together improve solid particle erosion resistance.  相似文献   

6.
In order to improve the oxidation resistance of carbon/carbon (C/C) composites, a ZrSiO4 coating on SiC pre-coated C/C composites was prepared by a hydrothermal electrophoretic deposition process. Phase compositions and microstructures of the as-prepared ZrSiO4/SiC coating were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The anti-oxidation property and failure mechanism of the multi-layer coating were investigated. Results show that hydrothermal electrophoretic deposition is an effective route to prepare crack-free ZrSiO4 outer coatings. The multi-layer coating obviously exhibits two-layer structure. The inner layer is composed of SiC phase and the outer layer is composed of ZrSiO4 phase. The bonding strength between the outer layer coatings and C/C–SiC substrate are 30.38 MPa. The ZrSiO4/SiC coating displays excellent oxidation resistance and can protect C/C composites from oxidation at 1773 K for 332 h with a mass loss rate of only 0.48 × 10− 4 g/cm2·h. The mechanical properties of the specimens are 84.36 MPa before oxidation and 68.29 MPa after oxidation. The corresponding high temperature oxidation activation energy of the coated C/C composites at 1573–1773 K is calculated to be 119.8 kJ/mol. The oxidation process is predominantly controlled by the diffusion rate of oxygen through the ZrSiO4/SiC multi-coating. The failure of the coating is due to the formation of penetrative holes between the SiC bonding layer and the C/C matrix at 1773 K.  相似文献   

7.
The wetting of molten Sn-3.5Ag-0.5Cu alloy on the Ni-P(-SiC) coated SiCp/Al substrates was investigated by electroless Ni plating process, and the microstructures of the coating and the interfacial behavior of wetting systems were analyzed. The SiC particles are evenly distributed in the coating and enveloped with Ni. No reaction layer is observed at the coating/SiCp/Al composite interfaces. The contact angle increases from ~19° with the Ni-P coating to 29°, 43° and 113° with the corresponding Ni-P-3SiC, Ni-P-6SiC and Ni-P-9SiC coatings, respectively. An interaction layer containing Cu, Ni, Sn and P forms at the Sn-Ag-Cu/Ni-P-(0,3,6)SiC coated SiCp/Al interfaces, and the Cu-Ni-Sn and Ni-Sn-P phases are detected in the interaction layer. Moreover, the molten Sn-Ag-Cu can penetrate into the Ni-P(-SiC) coatings through the Ni-P/SiC interface and dissolve them to contact the SiCp/Al substrate.  相似文献   

8.
Laser processing of Ti-SiC composite coating on titanium was carried out to improve wear resistance using Laser Engineered Net Shaping (LENS™) — a commercial rapid prototyping technology. During the coating process a Nd:YAG laser was used to create small liquid metal pool on the surface of Ti substrate in to which SiC powder was injected to create Ti-SiC metal matrix composite layer. The composite layers were characterized using X-ray diffraction, scanning and transmission electron microscopy equipped with fine probe chemical analysis. Laser parameters were found to have strong influence on the dissolution of SiC, leading to the formation of TiSi2, Ti5Si3 and TiC with a large amount of SiC on the surface. Detailed matrix microstructural analysis showed the formation of non-stoichiometric compounds and TiSi2 in the matrix due to non-equilibrium rapid solidification during laser processing. The average Young's modulus of the composite coatings was found to be in the range of 602 and 757 GPa. Under dry sliding conditions, a considerable increase in wear resistance was observed, i.e., 5.91 × 10− 4 mm3/Nm for the SiC reinforced coatings and 1.3 × 10−3 mm3/Nm for the Ti substrate at identical test conditions.  相似文献   

9.
Ni-P-TiN化学复合镀层具有比Ni-P镀层更高的硬度和耐磨性,但其表面粗糙度大,与对偶件之间的摩擦因数高,应用潜力受到限制。通过在化学镀液中添加不同用量的纳米WS_(2)颗粒和固定用量的TiN颗粒,在低碳钢表面制备Ni-P-TiN-WS_(2)复合镀层。采用X射线能谱仪(EDS)、扫描电子显微镜(SEM)和X射线衍射仪(XRD)对镀层的化学成分(质量分数)、表面形貌及微观结构进行表征,并利用球盘式摩擦磨损试验机测试复合镀层的摩擦磨损性能。结果表明:纳米WS_(2)颗粒与纳米TiN颗粒的共沉积可使镀层表面更加致密、平整。随着镀液中纳米WS_(2)用量的增加,复合镀层的硬度先减小后增大,与氮化硅陶瓷球的摩擦因数则先升后降,磨损率显著下降,耐磨性增强。镀液中纳米WS_(2)粉末的用量为2.5 g/L时复合镀层的摩擦学性能最佳。纳米WS_(2)颗粒的加入及用量优化可显著改善复合镀层的综合性能,可为发展高耐磨低摩擦因数的先进涂层提供借鉴。  相似文献   

10.
Nano-ceramic composite coatings were prepared by the electrodeposition method using sulphamate electrolyte. Nickel was chosen as the metal matrix and nano-Cr2O3 particles were chosen as the reinforcement. The surface morphology and the particle distribution in the coating were analysed using field emission scanning electron microscope (FESEM). The particle content was obtained using energy dispersive X-ray analysis (EDAX). A change in the surface morphology of Ni was seen on the incorporation of Cr2O3 particles. The coatings were characterized for their structure and no change in the diffraction pattern was seen between plain Ni and Ni-Cr2O3 composite. The mechanical property like microhardness and tribological behaviour of the nano-composite coatings was studied and it was observed that the incorporation of Cr2O3 particles enhanced the mechanical properties of Ni matrix. The nano-composites were analysed for their thermal stability and corrosion resistance. An improvement in thermal stability was observed but no change in the corrosion behaviour of Ni was seen on the incorporation of nano chromium oxide particles.  相似文献   

11.
The present work deals with the process of electroless deposition and electrochemical corrosion behavior of nickel-polychlorotrifluoroethylene-phosphorous (Ni-PCTFE-P) nanocomposite coatings. The process of autocatalytic-catalytic reduction of Ni in nickel sulfate and sodium hypophosphate solution with PCTFE suspended particles has been employed for the formation of the electroless Ni-PCTFE-P composite coatings. Surface morphology and composition of the composite coatings are characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) measurements and X-ray diffraction (XRD) analysis. Corrosion behavior of coatings is evaluated using open-circuit potential (EOCP) measurements, electrochemical impedance spectroscopy (EIS) and polarization techniques in 3.5 wt.% NaCl solution. The study reveals significant shift in corrosion potential towards the noble direction, decrease in corrosion current density, increase in charge transfer resistance and decrease in double‐layer capacitance values with the incorporation of PCTFE particles in the Ni-P matrix. The significant improvement in corrosion resistance observed for Ni-PCTFE-P nanocomposite coatings (25.3 kΩ cm2) compared to Ni-P (16 kΩ cm2) could have resulted from the microstructural differences of pure Ni-P with Ni-PCTFE-P nanocomposite coatings.  相似文献   

12.
To verify the relationship between the properties of composite coatings prepared on Q235 steel and the SiC content of electroless Ni-P-SiC composite coatings, systematic experiments with varied SiC contents and surfactants have been conducted. The experimental results indicated the approximate linear relation between the SiC content and the hardness of composite coatings. With the increasing of SiC content, wear resistance increases correspondingly. In particular, the effect of SiC content on the corrosion resistance of Ni-P-SiC composite coatings immersed in different corrosive solutions (i.e. 5% H2SO4, 20% NaOH and 3.5% NaCl) is explored, followed by a comparative analysis of the corrosion resistance between Ni-P and Ni-P-SiC coatings. Corrosion test indicates that NaOH solution makes no differences in the corrosion resistance between Ni-P coatings and electroless Ni-P-SiC composite coatings, both being uncorroded. Exposed to NaCl solution, the corrosion resistance of electroless Ni-P-SiC composite coatings decreases gradually with the increasing of SiC content in coatings. In H2SO4 solution, the corrosion resistance of coatings increases initially and decreases afterwards with the sustained increasing of SiC content in coatings, and the optimized corrosion resistance is obtained at a SiC content of 9.41 wt.%. Finally, a competent electroless Ni-P-SiC composite plating process producing a high wear resistance and sound corrosion resistance of the coatings is obtained.  相似文献   

13.
Nano-sized Al2O3 ceramic particles (50 nm) were co-deposited with nickel using electrodeposition technique to develop composite coatings. The coatings were produced in an aqueous nickel bath at different current densities and the research investigated the effect of applied current on microstructure and thickness of the coatings. The variation in some mechanical properties such as hardness, wear resistance, and the adhesive strength of the composite coatings is influenced by the applied current and this was also studied. The morphology of the coatings was characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. The hardness, wear resistance, and bond strength of the coatings were evaluated by Vickers micro-hardness test, pin-on-disc test, and tensile test, respectively. Results showed that the Al2O3 particles were uniformly distributed in the coatings, and the coatings deposited at a current density of 0.01 A/cm2 was most favorable in achieving a maximum current efficiency which causes the co-deposition of a maximum amount of Al2O3 particles (4.3 wt.%) in the coatings. The increase in Al2O3 particles in the coatings increased the mechanical properties of the Ni-Al2O3 composite coatings by grain refining and dispersion strengthening mechanisms.  相似文献   

14.
FeMnCr/Cr3C2 and FeMnCrAl/Cr3C2 coatings, using Ni9Al arc-sprayed coating as an interlayer on low-carbon steel substrates, were deposited by high velocity arc spraying (HVAS) on the cored wires. The high temperature oxidation behavior of the arc-sprayed FeMnCrAl/Cr3C2-Ni9Al and FeMnCr/Cr3C2 coatings on the low-carbon steel substrates was studied during isothermal exposures to air at 800 °C. The surface and interface morphologies of the coatings after isothermal oxidation after 100 h were observed and characterized by optical microscopy, field emission scanning electron microscope, energy dispersion spectrum, and X-ray diffraction. The results showed that the oxidation weight gains of the coatings were significantly lower than that of the low-carbon steel substrate. Moreover, the FeMnCrAl/Cr3C2-Ni9Al coating registered the lowest oxidation rate. This favorable oxidation resistance is due to the Al and Cr contents of the aforementioned coating that inhibits the generation of Fe and Mn oxides. This is attributed to the interdiffusion between the substrates and the Ni9Al arc-sprayed coating, which can convert the mechanical bonding between substrates and coatings into a metallurgical one, thereby inhibiting the oxidation of interface between the low-carbon steel and the coating.  相似文献   

15.
In the present work the corrosion resistance of micro-cracked hard chromium and Cr3C2-NiCr (HVOF) coatings applied on a steel substrate have been compared using open-circuit potential (EOC) measurements, electrochemical impedance spectroscopy (EIS) and polarization curves. The coatings surfaces and cross-section were characterized before and after corrosion tests using optical microscopy (OM) and scanning electron microscopy (SEM). After 18 h of immersion, the open-circuit potential values were around −0.50 and −0.25 V/(Ag∣AgCl∣KClsat) for hard chromium and Cr3C2-NiCr, respectively. The surface analysis done after 12 h of immersion showed iron on the hard chromium surface inside/near surface cracks, while iron was not detected on the Cr3C2-NiCr surface even after 18 h. For longer immersion time hard chromium was more degraded than thermal sprayed coating. For hard chromium coating a total resistance values between 50 and 80 kΩ cm2 were measured and two well-defined time constants were observed, without significant change with the immersion time. For Cr3C2-NiCr coating the total impedance diminished from around 750 to 25 kΩ cm2 as the immersion time increased from 17 up to 132 h and two overlapped time constants were also observed. Polarization curves recorded after 18 h of immersion showed a lower current and higher corrosion potential for Cr3C2-NiCr coating than other samples studied.  相似文献   

16.
A novel electroplating method has been developed to produce nanocrystalline metal-matrix nano-structured composite coatings. A small amount of transparent TiO2 sol was added into the traditional electroplating Ni solution, leading to the formation of nanocrystalline Ni-TiO2 composite coatings. These coatings have a smooth surface. The Ni nodules changed from traditional pyramid-like shape to spherical shape. The grain size of Ni was also significantly reduced to the level of 50 nm. It was found that the amorphous anatase TiO2 nano-particles (∼ 10 nm) were highly dispersed in the coating matrix. The microhardness was significantly increased from 320 HV100 of the traditional Ni coating to 430 HV100 of the novel composite coating with 3.26 wt.% TiO2. Correspondingly, the wear resistance of the composite coating was improved by ∼ 50%.  相似文献   

17.
Al + SiC, Al + Al2O3 composites as well as pure Al, SiC, and Al2O3 coatings were prepared on Si substrates by the cold gas dynamic spray process (CGDS or cold spray). The powder composition of metal (Al) and ceramic (SiC, Al2O3) was varied into 1:1 and 10:1 wt.%, respectively. The propellant gas was air heated up to 330 °C and the gas pressure was fixed at 0.7 MPa. SiC and Al2O3 have been successfully sprayed producing coatings with more than 50 μm in thickness with the incorporation of Al as a binder. Also, hard ceramic particles showed peening effects on the coating surfaces. In the case of pure Al metal coating, there was no crater formation on hard Si substrates. However, when Al mixed with SiC and Al2O3, craters were observed and their quantities and sizes depended on the composition, aggregation and size of raw materials.  相似文献   

18.
Electrodeposition and characterization of Ni-Co/SiC nanocomposite coatings   总被引:1,自引:0,他引:1  
Ni-Co/SiC nanocomposite coatings were electrodeposited in a modified watt type of Ni-Co bath containing 20 nm SiC particles to be codeposited. Potentiodynamic polarization tests were conducted to study the effect of the SiC particulates on the electrodeposition of Ni and Co. Scanning electron microscopy was used to assess the morphology of the Ni-Co alloy and Ni-Co/SiC nanocomposite coatings. The distribution of the particulates in the matrix was considered by means of transmission electron microscopy. Applying nanomechanical testing instruments coupled to atomic force microscopy, mechanical properties of the alloy and composite coatings were studied and compared. The presence of 11 vol.% SiC in the Ni-Co matrix increased hardness more than 60%. The average depth of scratch in the mentioned composite coating was about 15% less than that of the Ni-Co alloy coating. The corrosion penetration rate (CPR) of the Ni-Co alloy coating in a 3.5 wt.% NaCl solution was more than 17 times greater than that of the Ni-Co/SiC coating with 30.5 vol.% SiC.  相似文献   

19.
Electroless binary Ni-P and ternary Ni-W-P alloy coatings and electroless composite (Ni-P-ZrO2 and Ni-P-W-ZrO2) nickel coatings were deposited. Baths with aminoacetic acid as the complexing agent were used. ICP measurements showed that the P content depending on the type of coating is in a range of 4.7-6.3 wt.% (at pH = 6, t = 75 °C). The tungsten content is around 1-2 wt.%. SEM examinations show that the electroless Ni-P coating has the most fine-grained structure. Grains in the form of microspheroids 20 μm in size are characteristic of the Ni-P-ZrO2 coating. X-ray diffraction patterns show that for all the obtained coatings peak Ni(111) located around 2θ = 44° is the most intensive. After the coatings are heat treated at 400 °C for 1 h the peak becomes even sharper. The heat treatment results in a nearly double increase in crystallite size. The quaternary coatings' abrasion resistance is determined by the second-phase (ZrO2) particles present in them.  相似文献   

20.
Electrodeposited Ni/SiC composite coatings were obtained in a Watts-type bath. The effect of fine SiC particles on polarization curves of the cathodic reduction of nickel ions was discussed. The incorporation of the particles into the deposit with respect to current density and SiC concentration in the bath was tested. Cathodic current efficiencies were also calculated. Structure of as-plated and heat-treated Ni/SiC composites were examined by means of metallography observations as well as scanning and transmission electron microscopy methods. Two phase transformations in the temperatures range of 20-700 °C were found. For annealed samples, Ni2Si and Ni3Si2 phases were identified. Hardening of the Ni/SiC composites as a function of the particle content in the deposit and annealing temperature was determined by means of the microhardness testing method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号