首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
渣油加氢脱硫反应集总动力学模型的事前模拟   总被引:2,自引:1,他引:1  
 通过渣油加氢脱硫(HDS)中试装置实测数据,对渣油HDS反应集总动力学进行事前模拟。根据渣油中硫化物加氢反应速率的快慢,将其分别划分为2~6个集总,建立了5种渣油HDS反应集总动力学模型。通过对该5种模型拟合误差的比较分析,得到三、四集总模型的拟合平均相对误差最小。然后分别针对三、四集总渣油HDS反应动力学模型,求取了其动力学参数,并采用实测数据对模型的稳定性和外推性进行了验证。结果表明,模型参数中,温度、空速和氢分压等因素对HDS反应的影响符合硫化物加氢反应规律,对三、四集总模型验证的平均相对误差分别为2.32%和1.98%,说明模型的拟合性和预测性良好。所建模型可为渣油HDS反应集总动力学的深入研究提供参考。  相似文献   

2.
加氢渣油催化裂化七集总动力学模型的建立   总被引:1,自引:0,他引:1  
以加工加氢渣油的茂名石化3^#重油催化裂化装置的工业数据为基础,针对加氢渣油的特点,提出了以渣油四组分作为划分原料集总基础的催化裂化七集总动力学模型。通过变尺度法(B-F-G-S)和龙格库塔法确定动力学参数,并通过工业实测数据验证,表明该模型具有良好的拟合性和外推性,较好地反映了加氢渣油催化裂化反应规律。  相似文献   

3.
中国石油化工股份有限公司茂名分公司为了解决催化裂化柴油资源过剩问题,通过改造1号加氢裂化装置来处理催化裂化柴油,加上2号加氢裂化装置、蜡油加氢-催化裂化组合工艺、渣油加氢-催化裂化组合工艺配炼催化裂化柴油等一系列措施,找出劣质催化裂化柴油转化为汽油组分的有效途径。通过分析标定数据得知,改造后的1号加氢裂化装置使用针对处理催化裂化柴油的催化剂,可以有效将催化裂化柴油转化为汽油组分,汽油转化率高达51.61%,每年可创造效益9 458万元,仅仅靠后3种方法达不到如此的效果。  相似文献   

4.
采用固定床连续操作装置进行渣油加氢中试研究.中试采集的大量数据作为建模基础,运用非线性拟合方法,拟合了渣油加氢动力学参数,建立了包括催化剂失活校正和操作条件校正的渣油加氢动力学模型.结果表明,该模型可以比较准确地预测渣油加氢处理过程.该动力学模型不仅可以预测不同操作条件下各反应的杂质脱除率,而且可以计算在保证杂质脱除率不变的条件下,各工艺参数之间的相互影响规律.  相似文献   

5.
吕雷 《金陵科技》2004,11(6):10-10
渣油催化裂化装置上游组合采用渣油加氢处理(RDS)是加工渣油的经济方案。采用特定设计的渣油加氢处理催化剂体系也可改进原料的处理和过程参数。  相似文献   

6.
在中型试验装置上采用热载体流化预处理-渣油加氢处理-渣油催化裂化组合工艺加工伊朗减压渣油,可得到61.58%的轻质油和14.11%的气体。该组合工艺将脱碳和加氢有机地结合起来,既降低了操作压力,又减小了装置规模,还可大幅度减少投资和操作费用。  相似文献   

7.
渣油加氢-催化裂化组合工艺加工含硫渣油的必要性   总被引:1,自引:0,他引:1  
比较了加工含硫渣油的两种不同的典型组合工艺。结果表明,渣油加氢一催化裂化组合工艺虽然一次性投资和加工费用较高,但由于其液体产品收率高、产值高,使之经济效益反而较好,而且组合工艺在产品结构、产品质量以及环保方面都具有明显的优势。从长远看,组合工艺装置投资和加工成本都有下降的趋势,高原油价格对其也有利。因此渣油加氢-催化裂化组合工艺是加工含硫渣油的较佳选择。  相似文献   

8.
介绍了渣油加氢-催化裂化(RICP)双向组合技术在中国石油四川石化公司催化裂化装置的工业应用情况,探讨了RICP组合技术中催化裂化装置工艺操作调整措施。在RICP组合技术中,将减压渣油与催化裂化重循环油作为渣油加氢原料,经加氢处理后送至催化裂化装置。结果表明:RICP组合技术改善了催化裂化进料性质,催化裂化原料油残炭减小0.47百分点,氢含量增加0.3百分点,饱和烃质量分数增加4.26百分点,胶质和沥青质含量明显减少;改善了催化裂化产品分布和产品性质,催化裂化总转化率提高0.67百分点,总液体收率提高1.42百分点,焦炭产率下降0.63百分点,油浆产率下降0.85百分点,柴油十六烷值有所提高。  相似文献   

9.
针对炼油厂渣油加氢装置进料性质的变化引起产品及工艺条件变化的情况,提出一种渣油加氢脱残炭反应动力学模型并对其进行了验证。结果表明,在反应压力为17.0 MPa、液时空速为0.4 h-1、氢油体积比(700~1 000)∶1、反应温度380~418℃的工况下,以两种常压渣油的混合油为加工原料,选择催化剂活性平稳阶段(1 000~2 000 h)工业装置数据进行了非线性拟合获得动力学参数和理论反应温度,将该温度下产品残炭计算值与实验值进行了对比,两者以对角线形式均匀分布,非常吻合,且两者平均相对误差为1.6%;对理论反应温度与预期运行周期(DOS)进行拟合,催化剂活性稳定后两者呈较好的线性关系,通过计算得知,当装置操作温度达到418℃时的DOS计算值为548 d,DOS实验值为523 d,两者平均相对误差为4.6%,说明该模型准确度较高。最后选用其他原料油对该模型进行了验证,验证产品中残炭实验值与计算值平均相对误差为1.3%,当反应温度为399.65℃时的DOS计算值与实验值的平均相对误差为4.1%,满足动力学相对误差不大于5%的要求,说明该模型可靠性较高。  相似文献   

10.
介绍了齐鲁石化公司引进的减压渣油加氢脱硫装置生产及催化裂化装置掺炼其产品蜡油和渣油的情况.减压渣油加氢脱硫-重油催化裂化联合工艺和常压重油加氢脱硫-重油催化裂化联合工艺两者的对比表明,前者不仅经济效益好,产品质显高,而且流程合理灵活,是较好的渣油加工路线.  相似文献   

11.
After analysing the disadvantages of the traditional residue hydrotreating-catalytic cracking combination process, RIPP has proposed a bi-directional combination technology integrating residue hydrotreating with catalytic cracking called RICP which does not further recycles the FCC heavy cycle oil (HCO) inside the FCC unit and delivers HCO to the residue hydrotreating unit as a diluting oil for the residue that is concurrently subjected to hydrotreating prior to being used as the FCC feed oil. The RICP technology can stimulate residue hydrotreating reactions through utilization of HCO along with an increased yield of FCC light distillate, resulting in enhanced petroleum utilization and economic benefits of the refinery.  相似文献   

12.
开展了新型千万吨级炼油厂加工方案的研究,重点对比不同加工方案对全厂装置配置、产品结构和投资效益的影响。研究结果表明:千万吨级炼油厂转型生产化工产品和芳烃路线是可行的;当乙烯规模和对二甲苯规模一定时,浆态床渣油加氢裂化+固定床渣油加氢处理+催化裂化方案的汽煤柴油品收率最高,但汽油收率最高的方案为浆态床渣油加氢裂化+催化裂解方案,煤油和柴油收率均最高的方案为浆态床渣油加氢裂化+蜡油加氢裂化方案;在烯烃产品方面,渣油加氢技术和催化裂解技术组合方案可实现乙烯收率提高4~5百分点,丙烯收率提高5~6百分点,更好地助力炼油厂的化工转型;在投资效益方面,浆态床渣油加氢裂化+蜡油加氢裂化方案的投资最低,效益最高,是一条以较短加工流程实现炼油厂转型升级的技术路线。  相似文献   

13.
渣油加氢-催化裂化双向组合技术 RICP   总被引:5,自引:2,他引:5  
渣油加氢-催化裂化双向组合技术RICP与通常的渣油加氢-催化裂化组合技术不同之处是除了渣油加氢尾油去催化裂化外,催化裂化的回炼油掺入到渣油加氢原料中,一起加氢后再作催化裂化原料。回炼油的掺入降低了渣油加氢进料的粘度,提高了渣油加氢脱硫、脱金属、脱残炭和脱沥青质反应的速率,改善了生成油的性质。同时回炼油经过加氢,增加了氢含量,提高了催化裂化装置的轻油收率,降低了生焦量,因此提高了催化裂化装置的处理量和经济效益。  相似文献   

14.
中国石油化工股份有限公司洛阳分公司2.2 Mt/a蜡油加氢处理装置2009年5月建成投用,为催化裂化装置提供了优质蜡油原料,发挥了蜡油加氢处理与催化裂化组合工艺的优势.为进一步发挥该组合工艺潜力,采取蜡油加氢处理装置流程改造等优化措施,实现分馏系统停运,蜡油收率提高5.25百分点,有效提高了催化裂化装置处理能力,在降低蜡油加氢处理装置能耗的同时,改善了催化裂化产品分布,两套催化裂化轻质油收率分别提高1.20百分点和1.11百分点,汽油辛烷值提高了0.3个单位,经济效益显著.  相似文献   

15.
中国石油石油化工研究院针对催化裂化原料预处理所研发的PHF-311加氢催化剂,于2019年9月在中国石油独山子石化分公司1.0 Mt/a蜡油加氢装置上成功应用。标定结果表明,在反应温度358.5℃、反应压力10.9 MPa、氢油体积比699、主剂体积空速0.94 h-1的工艺条件下,加氢蜡油的硫质量分数为493μg/g,氮质量分数为474.8μg/g,残炭为0.15%,是优质的催化裂化原料;加氢柴油的硫质量分数为6.2μg/g,氮质量分数为30.8μg/g,可作为柴油调合组分。从装置运行情况可以看出,PHF-311催化剂表现出较高的加氢脱硫、脱氮及降残炭活性,能够满足企业对清洁燃料生产的要求。  相似文献   

16.
根据催化裂化反应机理和产物分布特点,建立了包含54条虚拟反应路径的重油催化裂化12集总反应网络。以Davison Circulating Riser(DCR)试验装置数据为基础,基于Python平台,将模型数学方程转化为程序语言,采用四阶Runge-Kutta 法求解模型微分方程、BFGS法优化目标函数,求取了模型的动力学参数。采用小型实验数据验证模型动力学参数,结果表明主要产品产率的计算值与实验值之间的相对误差均小于5%。说明所建模型的动力学参数是可靠的,能较好地反映重油催化裂化的反应规律,可用于对实际生产过程进行模拟优化。  相似文献   

17.
渣油催化裂化生焦反应集总动力学模型的研究   总被引:2,自引:1,他引:1  
在柴油馏分和重馏分油催化裂化生焦反应集总动力学模型研究的基础,通过生焦反应试验和动力学参数估计,建立渣油催化裂化生焦反应十集总动力学模型。结果表明,反应系统气相和液相均符合催化生焦机理的动力学模型,具有较好的拟合试验数据能力和良好的外推性,并符合催化裂化生焦反应规律。  相似文献   

18.
Based on the characteristics of maximizing iso-paraffins (MIP) process and industrial data, an 8-lump kinetic model for MIP process is developed. And the 47 kinetic parameters of the model are calculated by Runge-Kutta method and genetic algorithm. It is seen that kinetic parameters show good consistence with the reaction mechanism of catalytic cracking. The average relative errors between calculated values and real values of product distribution are all below 5%. Then the model is modified by 14-7-5 type of back propagation (BP) neural network. As a result, the product distribution can be predicted more accurately by the hybrid model. Therefore, the combination of lump model and neural network can provide a new direction for simulation and optimization for heavy oil catalytic cracking.  相似文献   

19.
在3×400 mL固定床加氢中试装置上评价了重油固定床加氢催化剂(包括重油加氢保护剂、重油加氢精制催化剂和芳烃饱和催化剂)用于中/低温煤焦油加氢改质的效果。中试条件为:原料体积空速0.8 h-1(按加氢精制催化剂计算),反应压力12.0 MPa和13.5 MPa,氢油比1 200∶1,保护剂床层平均反应温度270℃,精制催化剂床层平均反应温度350℃,芳烃饱和催化剂床层平均反应温度360℃,在2个操作压力下各运转120 h。结果表明:提高煤焦油加氢改质反应压力,有利于杂原子的脱除。煤焦油经过加氢改质后,残炭、杂原子、芳烃含量大大降低,各馏分产品性质明显改善。产物中石脑油馏分含量增加,芳烃潜含量高,可作为优质的催化重整原料;柴油馏分含量基本不变,硫、氮含量低,凝点低,可作为优质的柴油调合组分;蜡油馏分含量明显降低,残炭和金属含量少,可作为优质的催化裂化原料。上述结果表明将重油固定床加氢催化剂用于煤焦油加氢改质在技术上是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号