首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
A.N. Celik   《Renewable Energy》2006,31(1):105-118
This article presents a simplified algorithm to estimate the yearly wind fraction, the fraction of energy demand provided by wind generator, in a hybrid-wind system (typically a PV-wind) with battery storage. The novel model is drawn based on the simulation results, using 8-year long measured hour-by-hour wind speed data from five different locations throughout the world. The simulation program simulates the battery state of voltage (SoV) and is able to predict the wind fraction for a period of time, typically monthly or yearly. The yearly wind fraction values obtained from the simulations are plotted against the ratio of energy to load for various battery storage capacities to obtain wind fraction curves. The novel method correlates the yearly wind fraction with the parameters of the Weibull distribution function, thus, offering a general methodology. The yearly wind fraction curves are mathematically represented using a 2-parameter model. The novel algorithm is validated by comparing the simulated wind fraction values with those calculated from the simplified algorithm. The standard error of estimation of the WF from the simplified algorithm is further presented for each battery capacity.  相似文献   

2.
针对当前风力发电系统输出功率随机波动的问题,以永磁同步风力发电机(PMSG)与直流侧储能系统(钒氧化还原电池)整合的风力发电系统为基础,进行数字仿真建模,采用MATLAB/Simulink软件对固定负载,变化风速工况;固定风速,负荷瞬变工况;风速和负荷同时变化工况;进行了仿真试验和分析。结果表明,对于采用储能技术的风电场并网功率随机波动的平抑控制,可以利用蓄电池的充放电特性,在风速变化以及负荷瞬变时进行功率平衡的调节。  相似文献   

3.
电池储能系统(battery energy storage system,BESS)在风储联合应用中具有多种功能,利用电池储能系统提高风电并网调度运行能力是当前研究的热点之一.文章基于我国北方某风电场历史运行数据与预测数据,依据预测误差评价指标和风电场预报考核指标的综合评价方法对风电场预测数据进行分析研究,归纳了预测误差的概率分布特征;提出利用电池储能系统提高风电跟踪计划出力能力,统计并量化出电池储能系统用于跟踪计划出力场合的作用范围;通过仿真验证电池储能系统在风储联合系统中提高风电跟踪计划出力控制策略的有效性和可行性.  相似文献   

4.
In this paper, a new approach for optimally sizing the storage system employing the battery banks for the suppression of the output power fluctuations generated in the hybrid photovoltaic/wind hybrid energy system. At first, a novel multiple averaging technique has been used to find the smoothing power that has to be supplied by the batteries for the different levels of smoothing of output power. Then the battery energy storage system is optimally sized using particle swarm optimization according to the level of smoothing power requirement, with the constraints of maintaining the battery state of charge and keeping the energy loss within the acceptable limits. Two different case studies have been presented for different locations and different sizes of the hybrid systems in this work. The results of the simulation studies and detailed discussions are presented at the end to portrait the effectiveness of the proposed method for sizing of the battery energy storage system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A techno-economic analysis for autonomous small scale photovoltaic–wind hybrid energy systems is undertaken for optimisation purposes in the present paper. The answer to the question whether a hybrid photovoltaic–wind or a single photovoltaic or wind system is techno-economically better is also sought. Monthly analysis of 8 year long measured hourly weather data shows that solar and wind resources vary greatly from one month to the next. The monthly combinations of these resources lead to basically three types of months: solar-biased month, wind-biased month and even month. This, in turn, leads to energy systems in which the energy contributions from photovoltaic and wind generators vary greatly. The monthly and yearly system performances simulations for different types of months show that the system performances vary greatly for varying battery storage capacities and different fractions of photovoltaic and wind energy. As well as the system performance, the optimisation process of such hybrid systems should further consist of the system cost. Therefore, the system performance results are combined with system cost data. The total system cost and the unit cost of the produced electricity (for a 20 year system lifetime) are analysed with strict reference to the yearly system performance. It is shown that an optimum combination of the hybrid photovoltaic–wind energy system provides higher system performance than either of the single systems for the same system cost for every battery storage capacity analysed in the present study. It is also shown that the magnitude of the battery storage capacity has important bearings on the system performance of single photovoltaic and wind systems. The single photovoltaic system performs better than a single wind system for 2 day storage capacity, while the single wind system performs better for 1.25 day storage capacity for the same system cost.  相似文献   

6.
This paper proposes the generation scheduling approach for a microgrid comprised of conventional generators, wind energy generators, solar photovoltaic (PV) systems, battery storage, and electric vehicles. The electrical vehicles (EVs) play two different roles: as load demands during charging, and as storage units to supply energy to remaining load demands in the MG when they are plugged into the microgrid (MG). Wind and solar PV powers are intermittent in nature; hence by including the battery storage and EVs, the MG becomes more stable. Here, the total cost objective is minimized considering the cost of conventional generators, wind generators, solar PV systems and EVs. The proposed optimal scheduling problem is solved using the hybrid differential evolution and harmony search (hybrid DE-HS) algorithm including the wind energy generators and solar PV system along with the battery storage and EVs. Moreover, it requires the least investment.  相似文献   

7.
The yearly system performance of autonomous photovoltaic–wind hybrid energy systems with battery storage is the subject of this article. The yearly system performance is simulated using synthetically generated solar radiation and wind speed data and compared to that simulated using measured hour-by-hour data. Two different synthetic weather data sets are generated: 3-day month and 4-day month, in which 3 and 4 days represent a month, resulting in a total of 36 and 48 days for a year. The hourly varying solar radiation data are synthesised from the clearness index value for each month. The daily constant wind speed data are synthesised using the Weibull wind speed distribution model, on a monthly basis. Using two different synthetic weather data sets, the effect of number of synthetic days on the system performance estimation is studied. Different sequences of synthetic solar and wind days lead to 36 and 576 combinations for 3- and 4-day months, respectively. Three predetermined combinations for both the 3- and 4-day months are chosen and the system performance of an autonomous photovoltaic–wind hybrid energy system with battery storage is simulated using these predetermined combinations. It is shown that the yearly system performance predicted from the 3- and 4-day synthetic data closely agrees with that obtained from the measured data, varying only slightly for different combinations.  相似文献   

8.
This paper presents dynamic behavior and simulation results in a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage. The hybrid system consists of a 195 kW wind turbine, an 85 kW solar array; a 230 kW microturbine and a 2.14 kAh lead acid battery pack optimized based on economic analysis using genetic algorithm (GA). At first, a developed Lyapunov model reference adaptive feedback linearization method accompanied by an indirect space vector control is applied for extraction of maximum energy from a variable speed wind power generation system. Then, a fuzzy logic controller is designed for the mentioned purpose and its performance is compared with the proposed adaptive controller. For meeting more load demands, the solar array is integrated with the wind turbine. In addition, the microturbine and the battery storage are combined with the wind and solar power generation system as a backup to satisfy the load demand under all conditions.A supervisory controller is designed in order to manage energy between the maximum energy captured from the wind turbine/solar arrays, and consumed energies of the load, dump load, battery state of charge (SOC), and generated energy by the microturbine. Dynamic modeling and simulation are accomplished using MATLAB Simulink? 7.2.  相似文献   

9.
为了增加电池储能系统针对大规模风电并网对电网系统的友好性,降低风电功率波动对电网的不利影响,本文提出以电池荷电状态和风电功率为反馈量,改变平抑时间常数和电池储能系统充放电目标功率为目标的平抑风电功率波动的自适应控制策略。经仿真验证,上述策略能有效避免电池的荷电状态大幅波动,延长电池使用寿命,从而减小电池储能系统的安装容量,最大限度地发挥电池储能系统的作用。  相似文献   

10.
储能电池是分布式发电系统的关键组件。增加储能电池的容量可以提高发电系统的可靠性,但会增加系统的投资和运行费用。基于上海地区全年8 760 h的气象数据,计算了风光互补发电系统在不同储能容量下的负荷缺电率和能量溢出率的变化。对于独立的风光互补发电系统,在满足能量溢出率小于0.3的情况下,如果系统缺电率维持在1%左右时,需要配置3天的储能容量;如果系统缺电率为0,则需要配置5天的储能容量。  相似文献   

11.
Integration of wind machines and battery storage with the diesel plants is pursued widely to reduce dependence on fossil fuels. The aim of this study is to assess the impact of battery storage on the economics of hybrid wind‐diesel power systems in commercial applications by analyzing wind‐speed data of Dhahran, East‐Coast, Kingdom of Saudi Arabia (K.S.A.). The annual load of a typical commercial building is 620,000 kWh. The monthly average wind speeds range from 3.3 to 5.6 m/s. The hybrid systems simulated consist of different combinations of 100‐kW commercial wind machines (CWMs) supplemented with battery storage and diesel generators. National Renewable Energy Laboratory's (NREL's) (HOMER Energy's) Hybrid Optimization Model for Electric Renewables (HOMER) software has been employed to perform the economic analysis. The simulation results indicate that for a hybrid system comprising of 100‐kW wind capacity together with 175‐kW diesel system and a battery storage of 4 h of autonomy (i.e. 4 h of average load), the wind penetration (at 37‐m hub height, with 0% annual capacity shortage) is 25%. The cost of generating energy (COE, $/kWh) from this hybrid wind–battery–diesel system has been found to be 0.139 $/kWh (assuming diesel fuel price of 0.1$/L). The investigation examines the effect of wind/battery penetration on: COE, operational hours of diesel gensets. Emphasis has also been placed on un‐met load, excess electricity, fuel savings and reduction in carbon emissions (for wind–diesel without battery storage, wind–diesel with storage, as compared to diesel‐only situation), cost of wind–battery–diesel systems, COE of different hybrid systems, etc. The study addresses benefits of incorporation of short‐term battery storage (in wind–diesel systems) in terms of fuel savings, diesel operation time, carbon emissions, and excess energy. The percentage fuel savings by using above hybrid system is 27% as compared to diesel‐only situation Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
储能系统由于能够实现电能的时空平移,具有响应速度快,规模化等优点,是改善风电波动性,提高其并网能力的有效手段,构建风储联合发电系统成为目前研究重点.简单介绍了风电并网对电力系统的影响及不同类型电池储能技术的发展现状,给出了部分国内外风储联合发电系统的示范工程,并分析了平滑风电功率波动,跟踪计划出力曲线和削峰填谷3种主要运行方式,重点阐述了目前风储联合发电系统控制策略和储能容量配置研究现状,对进一步开展风储联合发电系统的研究进行了展望,指出经济性仍然是制约储能技术应用的关键问题之一,提高包含储能单元的风储联合发电系统的经济性是今后的研究重点.  相似文献   

13.
The combined utilization of renewables such as solar and wind energy is becoming increasingly attractive and is being widely used for substitution of oil-produced energy, and eventually to reduce air pollution. In the present investigation, hourly wind-speed and solar radiation measurements made at the solar radiation and meteorological monitoring station, Dhahran (26°32′N, 50°13′E), Saudi Arabia, have been analyzed to study the impact of key parameters such as photovoltaic (PV) array area, number of wind machines, and battery storage capacity on the operation of hybrid (wind + solar + diesel) energy conversion systems, while satisfying a specific annual load of 41,500 kWh. The monthly average wind speeds for Dhahran range from 4.1 to 6.4 m/s. The monthly average daily values of solar radiation for Dhahran range from 3.6 to 7.96 kWh/m2. Parametric analysis indicates that with two 10 kW wind machines together with three days of battery storage and photovoltaic deployment of 30 m2, the diesel back-up system has to provide about 23% of the load demand. However, with elimination of battery storage, about 48% of the load needs to be provided by diesel system.  相似文献   

14.
陈习坤  汤双清 《节能》2005,(1):22-25
本文提出了一种采用飞轮储能电池来充当能量储存器和电能质量调节器的独立运行式风力发电 系统,它由新型飞轮储能电池、风力发电机系统两大部分组成。文中分析了飞轮储能电池的储能和调节 电能质量的作用,详细分析了直流侧电压的调节方法,利用能量平衡原理推导出了前馈参数(iL-iG)与 定子电流iq的关系,并给出了控制方法。仿真结果证明了该系统具有优越的储能和改善电能质量的效 果。  相似文献   

15.
大规模风电并网会引起电力系统调峰能力不足,造成火电机组频繁启停或弃风。文章利用电池储能充放电灵活、可补充常规机组调峰能力不足的特性,提出了AGC机组、NON-AGC机组与储能系统间的协调控制策略。该策略引入了改进调度时间级,实现储能与常规机组时间协调配合;以AGC机组与NON-AGC机组的协调机制为基础,建立了AGC机组向NON-AGC机组与电池储能的转移功率模型。根据前一时刻机组的输出功率,计算出机组的调节余量实现电池储能参与系统调峰。实际系统算例分析结果表明,所提控制策略的可行性和有效性。  相似文献   

16.
The aim of this research is to analyze the techno‐economic performance of hybrid renewable energy system (HRES) using batteries, pumped hydro‐based, and hydrogen‐based storage units at Sharurah, Saudi Arabia. The simulations and optimization process are carried out for nine HRES scenarios to determine the optimum sizes of components for each scenario. The optimal sizing of components for each HRES scenario is determined based on the net present cost (NPC) optimization criterion. All of the nine optimized HRES scenarios are then evaluated based on NPC, levelized cost of energy, payback period, CO2 emissions, excess electricity, and renewable energy fraction. The simulation results show that the photovoltaic (PV)‐diesel‐battery scenario is economically the most viable system with the NPC of US$2.70 million and levelized cost of energy of US$0.178/kWh. Conversely, PV‐diesel‐fuel cell system is proved to be economically the least feasible system. Moreover, the wind‐diesel‐fuel cell is the most economical scenario in the hydrogen‐based storage category. PV‐wind‐diesel‐pumped hydro scenario has the highest renewable energy fraction of 89.8%. PV‐wind‐diesel‐pumped hydro scenario is the most environment‐friendly system, with an 89% reduction in CO2 emissions compared with the base‐case diesel only scenario. Overall, the systems with battery and pumped hydro storage options have shown better techno‐economic performance compared with the systems with hydrogen‐based storage.  相似文献   

17.
This paper aims to show the use of the response surface methodology (RSM) in size optimization of an autonomous PV/wind integrated hybrid energy system with battery storage. RSM is a collection of statistical and mathematical methods which relies on optimization of response surface with design parameters. In this study, the response surface, output performance measure, is the hybrid system cost, and the design parameters are the PV size, wind turbine rotor swept area and the battery capacity. The case study is realized in ARENA 10.0, a commercial simulation software, for satisfaction of electricity consumption of the global system for mobile communications (GSM) base station at Izmir Institute of Technology Campus Area, Urla, Turkey. As a result, the optimum PV area, wind turbine rotor swept area, and battery capacity are obtained to be 3.95 m2, 29.4 m2, 31.92 kWh, respectively. These results led to $37,033.9 hybrid energy system cost, including auxiliary energy cost. The optimum result obtained by RSM is confirmed using loss of load probability (LLP) and autonomy analysis.  相似文献   

18.
Computer-aided design of PV/wind hybrid system   总被引:1,自引:0,他引:1  
B. Ai  H. Yang  H. Shen  X. Liao 《Renewable Energy》2003,28(10):1491-1512
A complete set of match calculation methods for optimum sizing of PV/wind hybrid system is presented. In this method, the more accurate and practical mathematic models for characterizing PV module, wind generator and battery are adopted; combining with hourly measured meteorologic data and load data, the performance of a PV/wind hybrid system is determined on a hourly basis; by fixing the capacity of wind generators, the whole year’s LPSP (loss of power supply probability) values of PV/wind hybrid systems with different capacity of PV array and battery bank are calculated, then the trade-off curve between battery bank and PV array capacity is drawn for the given LPSP value; the optimum configuration which can meet the energy demand with the minimum cost can be found by drawing a tangent to the trade-off curve with the slope representing the relationship between cost of PV module and that of the battery. According to this match calculation method, a set of match calculation programs for optimum sizing of PV/wind hybrid systems have been developed. Applying these match calculation programs to an assumed PV/wind hybrid system to be installed at Waglan island of Hong Kong, the optimum configuration and its hourly, daily, monthly and yearly performances are given.  相似文献   

19.
The availability of day‐ahead production forecast is an important step toward better dispatchability of wind power production. However, the stochastic nature of forecast errors prevents a wind farm operator from holding a firm production commitment. In order to mitigate the deviation from the commitment, an energy storage system connected to the wind farm is considered. One statistical characteristic of day‐ahead forecast errors has a major impact on storage performance: errors are significantly correlated along several hours. We thus use a data‐fitted autoregressive model that captures this correlation to quantify the impact of correlation on storage sizing. With a Monte Carlo approach, we study the behavior and the performance of an energy storage system using the autoregressive model as an input. The ability of the storage system to meet a production commitment is statistically assessed for a range of capacities, using a mean absolute deviation criterion. By parametrically varying the correlation level, we show that disregarding correlation can lead to an underestimation of a storage capacity by an order of magnitude. Finally, we compare the results obtained from the model and from field data to validate the model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Solar and wind energy systems are omnipresent, freely available, environmental friendly, and they are considered as promising power generating sources due to their availability and topological advantages for local power generations. Hybrid solar–wind energy systems, uses two renewable energy sources, allow improving the system efficiency and power reliability and reduce the energy storage requirements for stand-alone applications. The hybrid solar–wind systems are becoming popular in remote area power generation applications due to advancements in renewable energy technologies and substantial rise in prices of petroleum products. This paper is to review the current state of the simulation, optimization and control technologies for the stand-alone hybrid solar–wind energy systems with battery storage. It is found that continued research and development effort in this area is still needed for improving the systems’ performance, establishing techniques for accurately predicting their output and reliably integrating them with other renewable or conventional power generation sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号