首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
本文对TiO2-SO2-4型固体超强酸催化剂的制备进行了研究,并应用于苄基甲苯的合成。考察了H2SO4浓度,与H2SO4接触时间、焙烧温度等条件对催化剂活性的影响。通过改变催化剂用量、反应温度对产品收率的影响,由正交实验确定了最佳工艺条件。在最佳工艺条件下,对二元及三元复合型固体超强酸催化剂的活性也进行了一些研究。实验结果表明,TiO2-SO2-4型固体超强酸催化剂及其复合型催化剂可用于苄基甲苯的合成,具有工业摧广价值。  相似文献   

2.
运用色谱微反关用技术研究了二氯甲烷在MxOy/ZSM-5沸石催化剂上的催化氧化,实验发现MxOy/ZSM-5催化剂可以在较低温度下表现较高的反应活性,如CrO3/ZSM-5-(1)在300℃即达100%。本文试验结果表明,MxOy/ZSM-5的催化活性次序为:CrO3/ZSM-5〉ZrO2/ZSM-5〉V2O5/ZSM-5实验还揭示:ZSM-5沸石中B酸中心浓度的不同明显影响催化剂的活性与选择性。  相似文献   

3.
采用气相流动吸附法制取了TiO2/γ-Al2O3复合载体,浸滞法担载一定量MoO3。用XRD,TPR方案考察了MoO3的分散状态,中压固定床反应装置测定了催化剂的噻吩加氢脱硫和环己烯加氢活性,结果表明,TiO2的加入能减弱MoO3与γ-Al2O3间的相互作用,促进MoO3的还原,提高催化剂的加氢脱硫活性。  相似文献   

4.
采用气相流动吸附法制取了TiO2/γ-Al2O3复合载体,浸滞法担载一定量MOO3.用XRD,TPR方法考察了MOO3的分散状态,中压固定床反应装置测定了催化剂的噻吩加氢脱硫和环己烯加氢活性.结果表明,TiO2的加入能减弱MOO3与γ-Al2O3间的相互作用,促进MOO3的还原,提高催化剂的加氢脱硫活性  相似文献   

5.
本文对TiO2-SO^2-4型固体超强酸催化剂的制备进行了研究,并应用于苄基甲苯的合成。考察了H2SO4浓度,与H2SO4接触时间,焙烧温度等条件对催化剂活性的影响。通过改变催化剂用量,反应温度对产品收率的影响,由正交实验确定了最佳工艺条件。  相似文献   

6.
运用色谱微反联用技术研究了二氯甲烷在MxOy/ZSM-5沸石催化剂上的催化氧化.实验发现,MxOy/ZSM-5催化剂可以在较低温度下表现出较高的反应活性,如CrO3/ZSM-5-(1)在300℃即达100%。本文试验结果表明,MxOy/ZSM-5的催化活性次序为;CrO3/ZSM-5>ZrO2/ZSM-5>V2O5/ZSM-5。实验还揭示,ZSM-5沸石中B酸中心浓度的不同明显影响催化剂的活性与选择性.  相似文献   

7.
已经开发出国产十二醇直接胺化法生产N,N-二甲基烷基(十二烷基)叔胺高活性(醇转化率99%),高选择性(叔胺收率94-95%)工业催化剂。发现SiO_2-Al_2O_3载体的SiO_2/Al_2O_3对催化活性,叔胺收率有明显影响,负载金属量在25~30%为催化剂较理想的负载量,并初步讨论了这些发现,提出了催化剂表面一定Cu/Ni的双金属合金颗粒可能是反应催化活性中心的观点。  相似文献   

8.
沸石型超强酸催化剂上乙酸乙酯合成反应研究   总被引:1,自引:0,他引:1  
考察了不同类型沸石,氧化物改性和焙烧温度等催化剂年鉴轩条件对其酸性和反应活性的影响。将SO^2-4-Fe2O3等超强酸中心引入到Hβ沸石表面制备沸石型超强酸催化剂,并用于乙酸和乙醇的酯化反应。建立了SO^2-4-Fe2O3/Hβ催化剂上合成乙酸乙酯反应动力学方程。  相似文献   

9.
在壬基酚聚氧乙烯醚反应研究与催化剂考察的基础上,提出了KOH.Ba(OH)2型二元复合催化剂。以产物分子量和产品色泽为主要指标,通过对催化剂浓度,反应温度。反应压力等反应条件的考察确定了壬基酚聚氧乙烯醚的最佳合成工艺条件,并对反应机理进行了探讨。  相似文献   

10.
溶胶—凝胶法CuO—ZnO/SiO2—ZrO2超细微粒催化剂的研究   总被引:9,自引:0,他引:9  
用溶胶-凝胶法制备了CuO-ZnO/SiO2-ZrO2超细催化剂,用XRD,IR,TPR,BET方法对其结构和性能了表征,并在固定订微型反应器上进行催化CO2加氢制甲醇性能的评价。结果表明,此催化剂具有高较高的活性,甲醇选择性高。  相似文献   

11.
SO_4~(2-)/ZrO_2固体超强酸催化剂上的酯化反应机理   总被引:4,自引:0,他引:4  
与液体酸和酸性树脂催化剂相比,固体超强酸催化剂具有许多优点,如无腐蚀性、不污染环境、易与产物分离和重使用性等。通过沉淀、老化、过滤、洗涤、干燥、浸渍、焙烧等过程,从ZrOCl2·8H2O和(NH4)2SO4制备了SO42-/ZrO2固体超强酸催化剂;使用Hammett指示剂法和吡啶吸附的FT-IR光谱法测定了其酸强度和酸中心类型;以甲醇、乙酸和乙酸乙酯吸附在SO42-/ZrO2固体超强酸催化剂上的FT-IR光谱,推测酯化反应机理。结果表明,当焙烧温度高于500℃,SO42-/ZrO2可以形成超强酸,其表面上同时存在Lewis酸和Bronsted酸中心;在SO42-/ZrO2固体超强酸催化剂上,酯化反应既可以在Lewis酸中心进行,也可以在Bronsted酸中心上进行。  相似文献   

12.
铁系固体超强酸的研究进展   总被引:1,自引:0,他引:1  
论述了以三氧化二铁为主要活性物质的固体超强酸的制备方法、影响催化活性的因素及其应用  相似文献   

13.
制备了超细固体超强酸SO42-/ZrO2,采用XRD、SEM、IR对该催化剂进行表征.以超细固体超强酸SO42-/ZrO2为催化剂,棕榈酸与乙醇为原料合成棕榈酸乙酯.探讨了不同催化剂类型、醇酸摩尔比、催化剂用量、反应时间等因素对转化率的影响.结果表明,与普通固体酸相比,超细固体超强酸SO42-/ZrO2对于棕榈酸乙酯的合成具有较好的催化性能.较适宜的反应条件为n(棕榈酸)∶n(乙醇)=4∶1,催化剂用量0.8 g,反应3 h.在此条件下,棕榈酸的收率可达70.3%.  相似文献   

14.
锆钛铟超强酸的制备及催化酯化柠檬酸三乙酯   总被引:2,自引:1,他引:1  
用共沉淀法,以铟(In)的质量分数、焙烧时间、焙烧温度为因素,通过L9(34)正交试验制备SO24-/TiO2-ZrO2-In2O3固体超强酸,以柠檬酸三乙酯合成考察了各因素对固体超强酸度的影响。结果表明,固体超强酸SO24-/TiO2-ZrO2-In2O3的最佳制备条件是In质量分数为1.5%,焙烧温度550℃,焙烧时间4h,其酯化率达97.8%。并用XRD、SEM、FTIR对固体超强酸进行了表征,加入In后,固体超强酸体积变大、膨松,可吸附更多的SO24-,使超强酸的酸性更强;固体超强酸中的TiO2由无定型结构转变为锐钛矿晶型结构,并随着焙烧温度的增加,TiO2的衍射峰逐渐变得尖锐。对酯化产物进行了红外光谱表征和折光率测定。  相似文献   

15.
采用浸渍法制备了负裁稀土的固体超强酸Ce(Ⅳ)-SO4^2-/TiO2催化剂,以柠檬酸三丁酯的合成为探针反应进行了单因素测试.实验结果表明,当Ce(SO4)2-4H2O的质量分数(占浸渍液)为2.0%,H2SO4浸渍液浓度为0.6mol/L,酸醇摩尔比1:4,催化剂用量为1.2g,反应时间为3.0h时,酯化率为86.5%.重复使用5次后,其酯化率仍达78,7%.  相似文献   

16.
以三氯氧磷和环氧氯丙烷为原料,在自制催化剂固体超强酸SO4^2-/TiO2-Al2O3/La^3+作用下合成了磷酸三(1,3-二氯丙基)酯,研究了SO4^2-/TiO2-Al2O3/La^3+对合成反应的影响.结果表明:在n(环氧氯丙烷):n(三氯氧磷)=3.3:1、催化剂用量为三氯氧磷的2%、反应时间为3h时,酯化率达98.5%.该催化剂易于回收且可重复使用.  相似文献   

17.
通过正交试验优化了三元稀土固体超强酸催化剂S2O2-8/Nd2O3-ZrO2-Al2O3的制备条件,最优条件为:陈化温度为-15℃,浸渍液浓度为1.5mol/L,焙烧温度为500℃.经过红外光谱法、X射线衍射法、透射电镜法对制备的催化剂进行了表征,结果表明:SO2-4与催化剂表面形成的是桥式双配位,而且拥有高催化性能;催化剂表面还呈现晶态结构,确定为表面催化;该催化剂其平均粒径小于17nm,处于纳米尺度.  相似文献   

18.
采用SO4^2-/TiO2代替传统工艺中的硫酸水溶液,对溴氨酸进行ullmann缩合反应.考察了反应温度、反应时间、催化剂投加量等因素对反应收率的影响.结果表明:在2.02g溴氨酸、0.95g铜粉、80mL蒸馏水的体系中,SO4^2-/TiO2用量为1.00g,在70℃下反应90min,溴氨酸缩合产物收率可达91%以上.催化剂可回收,用于光催化氧化溴氨酸缩舍反应产生的废水.  相似文献   

19.
SO_4~(2-)/TiO_2固体超强酸催化剂的表面化学研究   总被引:9,自引:0,他引:9  
通过沉淀、老化、过滤、洗涤、干燥、浸渍和焙烧等过程,从TiCl4和H2SO4制备了SO42-/TiO2固体超强酸。用XRD、LRS方法研究了SO42-/TiO2和TiO2的本体和表面结构;用化学分析法、Hammett指示剂滴定法和吡啶吸附的FT-IR光谱法测定了SO42-/TiO2的S含量、酸强度、酸中心类型和SO42-/TiO2表面上SO42-与TiO2表面的结合形式;用XPS测定了SO42-/TiO2的能量。研究结果表明,当预处理温度在425~575℃内,SO42-/TiO2催化剂体系可以形成固体超强酸,同时其表面上存在Lewis酸中心和Bronsted酸中心,并且Lewis酸中心和Bronsted酸中心可以相互转化;在本体中和表面上主要呈金红石结构,并没有Ti(SO4)2和TiOSO4的晶型存在;SO42-/TiO2表面上的OH为Bronsted酸中心,Ti4+上的空位为Lewis酸中心,SO42-以齿桥的形式与Ti4+配位,由于S+6的强吸电子能力而产生强的电子诱导效应,从而产生超强酸中心。  相似文献   

20.
采用沉淀浸渍法制备复合固体超强酸催化剂SO24-/ZrO2-Al2O3-WO3,运用Hammett指示剂法、FT-IR、XRD、SEM、TGA和BET等对相应的催化剂进行表征,并研究了陈化温度、焙烧温度、浸渍液浓度等制备条件以及Al2O3、WO3等不同金属氧化物的引入对SO24-/ZrO2的影响。结果表明,低温陈化的试样具有较强的酸性和催化活性,添加Al2O3可增大催化剂的比表面积和酸度值,引入WO3有利于酸性的增强。复合固体催化剂SO42-/ZrO2-Al2O3-WO3的最佳制备方案是,陈化温度为-10℃、m(Al2O3)/m(ZrO2)为3.5、m(WO3)/m(ZrO2)为1、浸渍液(NH4)2SO4浓度为1.0 mol.L-1、焙烧温度为500℃。该催化剂用于乙酸正丁酯的合成,其酯化率达到98.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号