首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 457 毫秒
1.
Mammalian oocytes grow and undergo meiosis within ovarian follicles. Oocytes are arrested at the first meiotic prophase, held in meiotic arrest by the surrounding follicle cells until a surge of LH from the pituitary stimulates the immature oocyte to resume meiosis. Meiotic arrest depends on a high level of cAMP within the oocyte. This cAMP is generated by the oocyte, through the stimulation of the G(s) G-protein by the G-protein-coupled receptor, GPR3. Stimulation of meiotic maturation by LH occurs via its action on the surrounding somatic cells rather than on the oocyte itself. LH induces the expression of epidermal growth factor-like proteins in the mural granulosa cells that act on the cumulus cells to trigger oocyte maturation. The signaling pathway between the cumulus cells and the oocyte, however, remains unknown. This review focuses on recent studies highlighting the importance of the oocyte in producing cAMP to maintain arrest, and discusses possible targets at the level of the oocyte on which LH could act to stimulate meiotic resumption.  相似文献   

2.
Germinal vesicle position and meiotic maturation in mouse oocyte   总被引:1,自引:0,他引:1  
During meiotic maturation, mammalian oocytes undergo an asymmetric division which is crucial for the formation of a functional gamete. In various organisms, accurate positioning of the nucleus before M-phase plays a major role in asymmetric cell divisions. However, the role of the position of the nucleus (or germinal vesicle, GV) during the prophase I arrest has not been investigated in mammalian oocytes. Here, we show that incompetent mouse oocytes possess a peripheral GV, while competent oocytes mainly exhibit a central position of the GV. At that time, the position of the GV correlates with the ability of the oocyte to complete meiotic maturation. Moreover, a lower efficiency in GV centering and a reduced ability to progress through meiosis are observed in oocytes from old mice. Thus, the position of the GV could be used as a simple morphological marker of oocyte quality.  相似文献   

3.
Oocyte cryopreservation is a potentially valuable way of preserving the female germ line. However, the developmental competence of cryopreserved oocytes is presently poor. This study investigated whether the morphology of the cumulus complex surrounding an immature equine oocyte and/or the oocyte's stage of maturation affect its cryopreservability. Compact (Cp) and expanded (Ex) cumulus oocyte complexes (COCs) were vitrified either shortly after recovery (germinal vesicle stage, GV) or after maturation in vitro (IVM); cryoprotectant-treated and -untreated non-frozen oocytes served as controls. In Experiment I, oocytes matured in vitro and then vitrified, or vice versa, were examined for maturation stage and meiotic spindle quality. Cp and Ex COCs vitrified at the GV stage matured at similar rates during subsequent IVM (41 vs 46% MII), but meiotic spindle quality was better for Cp than Ex (63 vs 33% normal spindles). Vitrifying oocytes after IVM resulted in disappointing post-warming spindle quality (32 vs 28% normal for Cp vs Ex). In Experiment II, oocytes from Cp and Ex COCs vitrified at the GV or MII stages were fertilized by intracytoplasmic sperm injection (ICSI) and monitored for cleavage and blastocyst formation. Oocytes vitrified prior to IVM yielded higher cleavage rates (34 and 27% for Cp and Ex COCs) than those vitrified after IVM (16 and 4%). However, only one blastocyst was produced from a sperm-injected vitrified-warmed oocyte (0.4 vs 9.3% and 13% blastocysts for cryoprotectant-exposed and -untreated controls). It is concluded that, when vitrification is the chosen method of cryopreservation, Cp equine COCs at the GV stage offer the best chance of an MII oocyte with a normal spindle and the potential for fertilization; however, developmental competence is still reduced dramatically.  相似文献   

4.
It has been suggested that preculturing immature oocytes in a manner that maintains them in meiotic arrest may improve cytoplasmic maturation and, thereby, the eventual developmental competence of oocytes matured in vitro. This study examined the ability of follicular cells to maintain meiotic arrest in equine oocytes. Cumulus-oocyte complexes (COCs) recovered from dead mares were cultured for 38 h in M199 either attached to, or together with, different follicle wall components, as follows: (1) attached to the follicle wall, (2) cocultured with separated follicle wall, (3) attached to membrana granulosa (COCG), (4) COCGs cocultured with sheets of theca cells, (5) COCGs cultured in theca-cell conditioned medium, and (6) control COCs without any follicle wall components. When oocytes were cultured attached to their follicle wall, 79% remained in the GV stage throughout the 38 h incubation. However, when oocytes were cocultured with separate pieces of follicle wall, meiosis resumed and a similar proportion of oocytes progressed to metaphase II (79%) as under control conditions (84%). Only 16% of oocytes cultured while still attached to the membrana granulosa (COCGs) maintained the GV stage, whereas when COCGs were cocultured with theca cells or in theca-cell conditioned medium, significantly more oocytes remained in the GV stage (64 and 52%, respectively), indicating that theca cells secrete a meiosis-inhibiting factor. The effect of FSH on the meiosis-inhibiting activity of follicular cells was investigated by culturing COCs attached to the follicle wall and COCGs in the presence or absence of theca cells in medium containing FSH. Addition of 0.05 iu recombinant human FSH ml(-1) to the culture medium did not affect nuclear maturation and failed to overcome the suppressive effect exerted by the follicle wall or by theca cells, despite the fact that mRNA for the FSH receptor was found using RT-PCR in both cumulus and granulosa cells. These results demonstrate that the maintenance of meiotic arrest in equine oocytes during culture can be promoted by theca cells, which appear to act via a secreted inhibitory factor that cannot be suppressed or counteracted by FSH.  相似文献   

5.
Ovarian follicles in vivo are cooler than surrounding abdominal and ovarian tissues. This study investigated whether typical follicular temperatures influence the maturation and developmental potential of pig oocytes in vitro. Oocytes were synchronised at the germinal vesicle (GV) stage and incubated at 39, 37 or 35.5 degrees C. When compared with 39 degrees C, which is often used for in vitro studies, lower temperatures delayed spontaneous progression to the metaphase I and II (MI and MII) stages of meiosis. The MII was delayed by about 12 h per degrees C. All oocytes had normal morphology. Oocytes reaching GV breakdown (GVBD) at 39 degrees C were subsequently unaffected by cooling, demonstrating thermal sensitivity during the pre-GVBD stage only. Simultaneous assay of maturation-controlling kinases (maturation promoting factor (MPF) and MAPK) showed that cooling delayed kinase activation, provided it was applied prior to GVBD. Activity profiles remained coupled to the stage of meiosis. Neither enzyme was directly thermally sensitive over this temperature range. Following in vitro fertilisation, fewer blastocysts developed from embryos derived from 35.5 or 37 degrees C oocytes as compared with those from 39 degrees C oocytes. Manipulation of fertilisation timings to allow for delayed maturation showed that over-maturing or aging at lower temperatures compromises subsequent embryo development, despite normal nuclear maturation; the GV stage was again the thermally sensitive period. Cleavage rates were improved by the culture of oocytes with follicle-stimulating hormone (FSH) at 37 but not at 35.5 degrees C. Inclusion of 20% follicular fluid in the oocyte medium restored the blastocyst rate to that seen at higher temperatures. Thus, FSH and follicular fluid may allow oocytes to achieve normal developmental potential at in vivo temperatures.  相似文献   

6.
Angiotensin II (AngII) prevents the inhibitory effect of follicular cells on oocyte maturation, but its involvement in LH-induced meiotic resumption remains unknown. The aim of this study was to assess the involvement of AngII in LH-induced meiotic resumption and of prostaglandins (PGs) in the action of AngII. In the experiment I, seven cows were superovulated, intrafollicularly injected with 10 muM saralasin (a competitive AngII antagonist) or saline when the follicles reached a diameter larger than 12 mm, and challenged with a GnRH agonist to induce an LH surge. Fifteen hours after GnRH, the animals were ovariectomized and the oocytes were recovered to determine the stage of meiosis. The oocytes from follicles that received saline were in germinal vesicle (GV) breakdown (30.8%) or metaphase I (MI; 69.2%) stage while those that received saralasin were in the GV stage (100%; P<0.001) 15 h after GnRH agonist. In another experiment, oocytes were co-cultured with follicular hemisections for 15 h to determine whether PGs mediate the effect of AngII on meiotic resumption. Indomethacin (10 microM) inhibited AngII-induced meiotic resumption (13.4 vs 77.5% MI without indomethacin; P<0.001). Furthermore, the GV oocytes progressed to MI at a similar rate when PGE(2), PGF(2alpha) or AngII was present in the co-culture system with follicular cells (PGE(2) 77.4%, PGF(2alpha) 70.0%, and AngII 75.0% MI). In conclusion, our results provide strong evidence that AngII mediates the resumption of meiosis induced by an LH surge in bovine oocytes and that this event is dependent on PGE(2) or PGF(2alpha) produced by follicular cells.  相似文献   

7.
Folliculogenesis is a complex process regulated by various paracrine and autocrine factors. In vitro growth systems of primordial and preantral follicles have been developed for future use of immature oocytes, as sources of fertilizable oocytes and for studying follicular growth and oocyte maturation mechanisms. Rodents were often chosen for in vitro follicular culture research and a lot of factors implicated in folliculogenesis have been identified using this model. To date, the mouse is the only species in which the whole process of follicular growth, oocyte maturation, fertilization and embryo transfer into recipient females was successfully performed. However, the efficiency of in vitro culture systems must still be considerably improved. Within the follicle, numerous events affect cell proliferation and the acquisition of oocyte developmental competency in vitro, including interactions between the follicular cells and the oocyte, and the composition of the culture medium. Effects of the acting factors depend on the stage of follicle development, the culture system used and the species. This paper reviews the action of endocrine, paracrine factors and other components of culture medium on in vitro growth of preantral follicles in rodents.  相似文献   

8.
The mechanisms underlying the hormonal stimulation of meiotic maturation are not understood. The most prevalent hypothesis is that hormone-induced maturation is stimulated by an increase in the intracellular messengers, cAMP or Ca2+. This study investigated whether Ca2+ transients in somatic cells can lead to Ca2+ transients in the oocyte, and whether hormones that stimulate meiotic maturation of mouse oocytes in vitro and in vivo stimulate an increase in intracellular Ca2+. Of a range of potential agonists of Ca2+ release, ATP and UTP were the only agents that stimulated Ca2+ release in cumulus cells. ATP-induced Ca2+ release is from intracellular stores, as the response is not blocked by chelation of extracellular Ca2+, but is inhibited by the Ca2+-ATPase inhibitor, thapsigargin. ATP and UTP are equipotent, consistent with the receptor being of the P2Y2 type. Confocal microscopy was used to show that ATP-induced Ca2+ release in cumulus cells leads to a Ca2+ increase in the oocyte. Inhibition of gap-junctional communication using carbenoxolone, as assayed by dye transfer, inhibited the diffusion of the Ca2+ signal from the cumulus cells to the oocyte. Thus, provided that a Ca2+ signal is generated in the somatic cells in response to maturation-inducing hormones, it is feasible that a Ca2+ transient is generated in the oocyte. However, FSH and EGF, both of which stimulate maturation in vitro, have no effect on Ca2+ in cumulus--oocyte complexes. Furthermore, LH, which leads to meiotic maturation in vivo, did not stimulate Ca2+ release in acutely isolated granulosa cells from preovulatory mouse follicles. These studies indicate that ATP may play a role in modulating ovarian function and that diffusion of Ca2+ signals through gap junctions may provide a means of communication between the somatic and germ cells of the ovarian follicle. However, our data are not consistent with a role for Ca2+-mediated communication in hormone-mediated induction of meiosis in mice.  相似文献   

9.
The spindle assembly checkpoint (SAC) ensures proper segregation of chromosomes by delaying anaphase onset until all kinetochores are properly attached to the spindle microtubules. Oocytes from the mouse strain LT/Sv arrest at the first meiotic metaphase (MI) due to, as reported recently, enormously prolonged activity of the SAC. We compared the dynamics of cyclin B1-GFP degradation, the process which is a measure of the SAC activity, in chromosomal and achromosomal halves of LT/Sv oocytes. In chromosome-containing oocyte halves arrested at MI, cyclin B1-GFP was not degraded indicating active SAC. However, in the halves lacking chromosomes, which is a condition precluding the SAC function, degradation always occurred confirming that MI arrest in LT/Sv oocytes is SAC dependent. Transferring the germinal vesicle (GV) from LT/Sv oocytes into the enucleated oocytes from wild-type mice resulted in the progression through meiosis one, indicating that a SAC-activating defect in LT/Sv oocytes is cytoplasmic, yet can be rescued by foreign cytoplasm. These results may help to define the etiology of the human infertility related to the oocyte MI arrest, indicating the involvement of the SAC as likely candidate, and point to GV transfer as the possible therapy. Finally, we found that majority of oocytes isolated from old LT/Sv mice complete the first meiosis. Reciprocal transfers of the GV between the oocytes from young and old LT/Sv females suggest that the factor(s) responsible for the reversal of the phenotype in oocytes from old mice is located both in the GV and in the cytoplasm.  相似文献   

10.
Various types of cell cycle organization occur in mammals. In this study, centrosome changes during meiosis in horse oocytes, and first cell cycle organization following fertilization, parthenogenesis and nuclear transfer, were monitored. Cumulus oocyte complexes harvested from horse ovaries obtained from slaughtered mares were cultured in vitro. Meiotic oocytes of germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I and II (MI and MII) stages were selected at various set times during in vitro maturation. Embryos at the first cell cycle stage were generated by subjecting MII stage oocytes to fertilization by intracytoplasmic sperm injection (ICSI), parthenogenetic treatment or nuclear transfer. Centrosome changes during meiosis and the first cell cycle organization were detected by indirect immunofluorescent staining, using a mouse anti-alpha-tubulin antibody for microtubules and a rabbit anti-gamma-tubulin antibody for centrosomes. These examinations showed that the centrosomes of the horse oocyte reorganize themselves from the beginning of GV stage to leave only PCM of gamma-tubulin surrounding both poles of the MI and MII stage spindles. These MII oocytes can organize the separation of metaphase chromosomes during the first embryonic cell cycle by parthenogenetic treatment. When the MII oocytes were subjected to ICSI or nuclear transfer, one or two red-stained centrosomes of gamma-tubulin were introduced by the fertilising spermatozoon or the donor cell which associated with the sperm chromatin in the fertilized embryos and with the donor cell chromatin and microtubules in the cloned embryos. This finding suggests that centrosomes are not an essential component in the formation of the metaphase spindle during meiotic maturation of horse oocytes, but they can be introduced from the spermatozoon or donor cell and are necessary for the organization of normal embryonic development.  相似文献   

11.
Microfilaments (actin filaments) regulate various dynamic events during meiotic maturation. Relatively, little is known about the regulation of microfilament organization in mammalian oocytes. Proline-rich tyrosine kinase2 (Pyk2), a protein tyrosine kinase related to focal adhesion kinase (FAK) is essential in actin filaments organization. The present study was to examine the expression and localization of Pyk2, and in particular, its function during rat oocyte maturation. For the first time, by using Western blot and confocal laser scanning microscopy, we detected the expression of Pyk2 in rat oocytes and found that Pyk2 and Try402 phospho-Pyk2 were localized uniformly at the cell cortex and surrounded the germinal vesicle (GV) or the condensed chromosomes at the GV stage or after GV breakdown. At the metaphase and the beginning of anaphase, Pyk2 distributed asymmetrically both in the ooplasm and the cortex with a marked staining associated with the chromosomes and the region overlying the meiotic spindle. At telophase, Pyk2 was observed in the cleavage furrows in addition to its cortex and cytoplasm localization. The dynamics of Pyk2 were similar to that of F-actin, and this kinase was found to co-localize with microfilaments in several developmental stages during rat oocyte maturation. Microinjection of Pyk2 antibody demolished the microfilaments assembly and also inhibited the first polar body (PB1) emission. These findings suggest an important role of Pyk2 for rat oocyte maturation by regulating the organization of actin filaments.  相似文献   

12.
The aim of this study was to evaluate the effect of progesterone supplementation and stage of oestrous cycle on in vitro maturation (IVM) of canine oocytes. Oocytes were cultured in medium supplemented with 0, 2000, 4000 or 8000 ng progesterone ml(-1) (Expt 1; n=274 oocytes) or 0, 20, 200 or 2000 ng progesterone ml(-1) (Expt 2; n=789 oocytes). In Expt 3, oocytes (n=1202) were cultured in a bi-phasic system of meiotic arrest followed by IVM, both in the presence of 0, 20, 200 or 2000 ng progesterone ml(-1). Rates of meiotic resumption for Expt 1 ranged from 40.0% to 58.5%; there were no significant differences among groups. In Expt 2, rate of meiotic resumption was significantly lower in the 2000 ng progesterone ml(-1) treatment (35.5%) compared with the 200 ng progesterone ml(-1) treatment (54.0%; P<0.05). There were no significant differences in rates of maturation to metaphase II among treatments in Expt 1 (1.8-8.6%) or Expt 2 (8.4-14.7%); however, oocytes collected from ovaries of bitches in oestrus and dioestrus had higher rates of maturation to metaphase II than did oocytes from bitches at pro-oestrus or anoestrus (P<0.01). In Expt 3, no differences were observed in rates of maturation among treatment groups. Rates of maturation to metaphase II of oocytes from bitches in dioestrus were significantly higher than those from bitches in pro-oestrus (P<0.01). These results indicate that supplementation of culture medium with progesterone either during maturation or during meiotic arrest before maturation does not increase the rate of IVM of canine oocytes. However, stage of oestrous cycle is a key factor in the selection criteria for meiotically competent canine oocytes for use in in vitro experiments.  相似文献   

13.
The overall objective was to evaluate the effectiveness of the S-enantiomer of roscovitine (inhibitor of p34cdc2/cyclin B kinase) to maintain bovine cumulus-oocyte complexes at the germinal vesicle (GV) stage for extended times after removal from antral follicles without compromising subsequent maturation, fertilization and embryo development. Oocytes were cultured in 0, 12.5, 25 or 50 micromol/l S-roscovitine for 24 h. Hoechst staining showed that 50 micromol/l S-roscovitine maintained >90% of oocytes at the GV stage and inhibited gonadotropin-induced cumulus expansion. Fewer oocytes underwent nuclear maturation after in vitro maturation (Hoechst staining) when cultured in 50 micromol/l S-roscovitine for 66 versus 21 or 42 h. Zona pellucida (ZP) hardening (pronase resistance), cortical granule types (lens culinaris agglutinin-fluorescein isothiocyanate), nuclear maturation and fertilization with frozen-thawed spermatozoa (Hoechst staining) were assessed after culture of oocytes in 50 micromol/l S-roscovitine for 0, 24 or 48 h. Neither ZP hardening, nor nuclear maturation nor fertilization were altered by roscovitine culture for 48 h. A higher proportion of oocytes had a type III cortical granule pattern (premature translocation to the oolemma) after roscovitine culture for 48 h. However, embryo development was not compromised as cleavage, development to 8-16 cell and blastocyst stages were at least comparable in control and roscovitine-treated oocytes. In conclusion, the studies have shown that S-roscovitine reversibly maintained bovine oocytes at the GV stage for 48 h. However, maintenance of oocytes in static culture for 48 h was not sufficient to improve development above non-treated controls.  相似文献   

14.
This study was carried out to investigate the contributions of chromosomes to spindle assembly in mouse oocytes. We generated two groups of cytoplasts (holo- and hemi-cytoplasts) by enucleation of germinal vesicle (GV), metaphase I (MI), and metaphase II (MII) oocytes using micromanipulation technology. After in vitro culture for 18 h, spindles with different shapes (bi-, mono-, or multipolar) formed in most of these cytoplasts except in hemi-GV cytoplasts. Two or more spindles were observed in most of holo-GV, holo-MI, and holo-MII cytoplasts (76.1, 77.0, and 83.7% respectively). However, the proportions of hemi-MI and hemi-MII cytoplasts with multiple sets of spindles decreased to 17.6 and 20.7% respectively. A single bipolar spindle was observed in each sham-operated oocyte generated by removing different volumes of cytoplasm from the oocytes and keeping nuclei intact. Localization of gamma-tubulin showed that microtubule organizing centers (MTOCs) were dispersed at each pole of the multiple sets of spindles formed in holo-cytoplasts. However, most of the MTOCs aggregated at the two poles of the bipolar spindle in sham-operated oocytes. Our results demonstrate that chromosomes are not essential for initiating spindle assembly but for directing distinct MTOCs to aggregate to form a bipolar spindle. Some factors of undetermined nature may pre-exist in an inactive form in GV-stage ooplasm, serving as initiators of spindle assembly upon their activation. Moreover, GV materials released into the cytoplasm may facilitate spindle assembly in normal meiotic maturation.  相似文献   

15.
Recent reports have shown that glucocorticoids can modulate oocyte maturation in both teleost fish and mammals. Within potential target cells, the actions of physiological glucocorticoids are modulated by 11beta-hydroxysteroid dehydrogenase (HSD11B) isoenzymes that catalyse the interconversion of cortisol and cortisone. Hence, the objective of this study was to establish whether HSD11B enzymes mediate cortisol-cortisone metabolism in porcine oocytes and, if so, whether the rate of glucocorticoid metabolism changes during oocyte maturation. Enzyme activities were measured in cumulus-oocyte complexes (COCs) and denuded oocytes (DOs) using radiometric conversion assays. While COCs and DOs oxidised cortisol to inert cortisone, there was no detectable regeneration of cortisol from cortisone. The rate of cortisol oxidation was higher in expanded COCs than in compact COCs containing germinal vesicle (GV) stage oocytes (111+/-6 vs 2041+/-115 fmol cortisone/oocyte.24 h; P<0.001). Likewise, HSD11B activities were 17+/-1 fold higher in DOs from expanded COCs than in those from compact COCs (P<0.001). When GV stage oocytes were subject to a 48 h in vitro maturation protocol, the enzyme activities were significantly increased from 146+/-18 to 1857+/-276 fmol cortisone/oocyte.24 h in GV versus MII stage oocytes respectively (P<0.001). Cortisol metabolism was inhibited by established pharmacological inhibitors of HSD11B (glycyrrhetinic acid and carbenoxolone), and by porcine follicular and ovarian cyst fluid. We conclude that an HSD11B enzyme (or enzymes) functions within porcine oocytes to oxidise cortisol, and that this enzymatic inactivation of cortisol increases during oocyte maturation.  相似文献   

16.
Natriuretic peptide type C (NPPC) and its high affinity receptor, natriuretic peptide receptor 2 (NPR2), have been assumed to be involved in female reproduction and have recently been shown to play an essential role in maintaining meiotic arrest of oocytes. However, the overall role of NPPC/NPR2 signaling in female reproduction and ovarian function is still less clear. Here we report the defects observed in oocytes and follicles of mice homozygous for Nppc(lbab) or Npr2(cn), mutant alleles of Nppc or Npr2 respectively to clarify the exact consequences of lack of NPPC/NPR2 signaling in female reproductive systems. We found that: i) Npr2(cn)/Npr2(cn) female mice ovulated a comparable number of oocytes as normal mice but never produced a litter; ii) all ovulated oocytes of Npr2(cn)/Npr2(cn) and Nppc(lbab)/Nppc(lbab) mice exhibited abnormalities, such as fragmented or degenerated ooplasm and never developed to the two-cell stage after fertilization; iii) histological examination of the ovaries of Npr2(cn)/Npr2(cn) and Nppc(lbab)/Nppc(lbab) mice showed that oocytes in antral follicles prematurely resumed meiosis and that immediately before ovulation, oocytes showed disorganized chromosomes or fragmented ooplasm; and iv) ovulated oocytes and oocytes in the periovulatory follicles of the mutant mice were devoid of cumulus cells. These findings demonstrate that NPPC/NPR2 signaling is essential for oocyte meiotic arrest and cumulus oophorus formation, which affects female fertility through the production of oocytes with developmental capacity.  相似文献   

17.
Complete maturation of oocytes is essential for the developmental competence of embryos. Any interventions in the growth phase of the oocyte and the follicle in the ovary will affect oocyte maturation, fertilization and subsequent embryo development. Oocyte size is associated with maturation and embryo development in most species examined and this may indicate that a certain size is necessary to initiate the molecular cascade of normal nuclear and cytoplasmic maturation. The minimum size of follicle required for developmental competence in humans is 5-7 mm in diameter. Maturation in vitro can be accomplished in humans, but is associated with a loss of developmental competence unless the oocyte is near completion of its preovulatory growth phase. This loss of developmental competence is associated with the absence of specific proteins in oocytes cultured to metaphase II in vitro. The composition of culture medium used successfully for maturation of human oocytes is surprisingly similar to that originally developed for maturation of oocytes in follicle culture in vitro. The presence of follicle support cells in culture is necessary for the gonadotrophin-mediated response required to mature oocytes in vitro. Gonadotrophin concentration and the sequence of FSH and FSH-LH exposure may be important for human oocytes, particularly those not exposed to the gonadotrophin surge in vivo. More research is needed to describe the molecular and cellular events, the presence of checkpoints and the role of gene expression, translation and protein uptake on completing oocyte maturation in vitro and in vivo. In the meantime, there are very clear applications for maturing oocytes in human reproductive medicine and the success rates achieved in some of these special applications are clinically valuable.  相似文献   

18.
Cryopreservation of ovarian tissue is an important option for preserving the fertility of cancer patients undergoing chemotherapy and radiotherapy. In this study, we examined the viability and function of oocytes derived in vitro from pre-antral follicles as an alternative method for restoring fertility. Pre-antral follicles (specified as secondary follicle with a diameter around 100-130?μm) were mechanically isolated from vitrified-warmed and fresh adult mouse ovarian tissues and cultured for 12 days followed by an ovulation induction protocol at the end of this period to initiate oocyte maturation. Oocytes were then released from these follicles, fertilized in vitro, and cultured to the blastocyst stage and vitrified. After storage in liquid nitrogen for 2 weeks, groups of vitrified blastocysts were warmed and transferred into pseudo-pregnant recipient females. Although most of the isolated mouse pre-antral follicles from fresh (79.4%) and vitrified (75.0%) ovarian tissues survived the 12-day in vitro culture period, significantly fewer mature oocytes developed from vitrified-warmed pre-antral follicles than from the fresh controls (62.2 vs 86.4%, P<0.05). No difference was observed in embryo cleavage rates between these two groups, but the proportion of embryos that developed into blastocysts in the vitrification group was only half that of the controls (24.2 vs 47.2%, P<0.05). Nevertheless, live births of healthy normal pups were achieved after transfer of vitrified blastocysts derived from both experimental groups. This study shows that successful production of healthy offspring using an in vitro follicle culture system is feasible, and suggests that this procedure could be used in cancer patients who wish to preserve their fertility using ovarian tissue cryopreservation.  相似文献   

19.
The dynamics of cyclin B1 distribution during meiosis I in mouse oocytes   总被引:2,自引:0,他引:2  
Cdk1-cyclin B1 kinase activity drives oocytes through meiotic maturation. It is regulated by the phosphorylation status of cdk1 and by its spatial organisation. Here we used a cyclin B1-green fluorescent protein (GFP) fusion protein to examine the dynamics of cdk1-cyclin B1 distribution during meiosis I (MI) in living mouse oocytes. Microinjection of cyclin B1-GFP accelerated germinal vesicle breakdown (GVBD) and, as previously described, overrides cAMP-mediated meiotic arrest. GVBD was pre-empted by a translocation of cyclin B1-GFP from the cytoplasm to the germinal vesicle (GV). After nuclear accumulation, cyclin B1-GFP localised to the chromatin. The localisation of cyclin B1-GFP is governed by nuclear import and export. In GV intact oocytes, cyclin export was demonstrated by showing that cyclin B1-GFP injected into the GV is exported to the cytoplasm while a similar size dextran is retained. Import was revealed by the finding that cyclin B1-GFP accumulated in the GV when export was inhibited using leptomycin B. These studies show that GVBD in mouse oocytes is sensitive to cyclin B1 abundance and that the changes in distribution of cyclin B1 contribute to progression through MI.  相似文献   

20.
In somatic cells, the serine/threonine kinase Akt (or protein kinase B) was shown to contribute to processes linked to cellular growth, cell survival and cell cycle regulation. In contrast to these findings, the function of Akt during the meiosis of mammalian oocytes remains to be investigated. We analysed the phosphorylation pattern and the activity of Akt during meiotic maturation (transition from prophase I to metaphase II) of bovine oocytes. The oocytes were matured in vitro (IVM) for 0, 10 and 24 h to reach the germinal vesicle (GV), metaphase I (M I) and metaphase II (M II) stages respectively. The abundance and phosphorylation pattern of Akt was revealed by Western blotting using total Akt or phosphoso-Akt-specific antibodies. The activity of this particular kinase was determined by an in vitro kinase assay. Furthermore, functional properties were analysed by cultivating oocytes in the presence of the Akt inhibitor SH6. The results showed that the overall abundance of Akt did not change significantly during IVM. On the other hand, Akt became phosphorylated at Thr 308 and Ser 473, reaching its maximum at the M I phase. In the GV and M II stages, only low basal phosphorylation levels were observed on both sides. This phosphorylation profile corresponded strictly to the activity of the kinase. The cultivation of oocytes in the presence of the phosphatidylinositol analogue SH6 for 24 h showed that, with higher concentrations, up to 65% of the oocytes were arrested in the M I stage. This result indicated that Akt is involved in the M I/M II transition during the meiotic maturation of bovine oocytes. The physiological aspects of the Akt function will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号