首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过分散共聚制得了聚苯乙烯接枝聚醋酸乙烯酯(PSt-g-PVAc)微球,粒径控制在500~700nm之间.在碱性条件下将PSt-g-PVAc微球表面的PVAc链醇解为聚乙烯醇(PVA),得到了PSt-g-PVA微球,提高了其在水中的分散稳定性.使汽巴蓝(CB)与PSt-g-PVA表面的羟基进行亲核反应,制得了CB作为配体的新型吸附剂汽巴蓝功能微球(CB微球),元素分析测得CB微球表面的CB最大含量为139.22μmol/g,探讨了其在不同人血清白蛋白(HSA)浓度、pH值和吸附时间下对HSA的吸附性能.当HSA浓度为1.0mg/mL、pH为5.14时,CB微球对HSA的最大吸附量为40.9mg/g,并分析了CB微球与HSA的相互作用机理.由NaSCN进行解吸试验,发现可将吸附在CB微球上的HSA解吸92.11%以上,且CB微球的重复使用性能良好.  相似文献   

2.
Alizarin Red S (ARS), is a water-soluble, widely used anthraquinone dye synthesized by sulfonation of alizarin. In this report, the binding of ARS to human serum albumin (HSA) was characterized by employing fluorescence, UV/vis absorption, circular dichroism (CD), and molecular modeling methods. The data of fluorescence spectra displayed that the binding of ARS to HSA is the formation of HSA-ARS complex at 1:1 stoichiometric proportion. Hydrophobic probe 8-anilino-1-naphthalenesulfonic acid (ANS) was employed and elucidated that the dye was located in subdomain IIIA. This phenomenon corroborates the result of site-specific probe displacement experiments, which demonstrate the dye is at indole-benzodiazepine site (Sudlow's site II); and it is also consistent with guanidine hydrochloride (GuHCl) induced HSA unfolding studies and molecular modeling simulations. The features of the dye, which led to structural perturbations of HSA, have also been studied in detail by methods of UV/vis, CD and three-dimensional fluorescence spectroscopy.  相似文献   

3.
Sun Y  Su B  Xu Q  Liu R 《Applied spectroscopy》2012,66(7):791-797
As one of the important thiazole derivatives, 2-aminobenzothiazole (2-ABT) has been widely used as a structural unit in the synthesis of anti-oxidants, anti-inflammatories, herbicides, antibiotics, and thermoplastic polymers. In this study, the interaction of 2-ABT with human serum albumin (HSA) was investigated in vitro under simulated physiological conditions, using multi-spectroscopic techniques and a molecular modeling study. The binding constant and binding sites were determined through fluorescence quenching spectra. The site-competitive replacement experiments revealed that the precise binding site of 2-ABT on HSA was site II (subdomain IIIA). Moreover, molecular docking results illustrated the electrostatic interaction between Glu 450 and 2-ABT, in accordance with the conclusions from the calculated thermodynamic parameters and the effect of ionic strength. The effect of 2-ABT on the conformational changes of HSA were evaluated by ultraviolet-visible (UV-Vis) absorption, three-dimensional (3D) fluorescence, synchronous fluorescence, and circular dichroism (CD) spectroscopy. This work facilitates comprehensive understanding of the binding of 2-ABT with HSA, contributing to evaluate the molecular transportation mechanism and biotoxicity of 2-aminobenzothiazole derivatives in vivo.  相似文献   

4.
Phthalate esters (PAEs) are globally pervasive contaminants that are considered to be endocrine disruptor chemicals and toxic environmental priority pollutants. In this paper, the interactions between PAEs and human serum albumin (HSA) were examined by molecular modelling, steady state and time-resolved fluorescence, ultraviolet-visible spectroscopy (UV-vis) and circular dichroism spectroscopy (CD). The association constants between PAEs and HSA were determined using the Stern-Volmer and Scatchard equations. The binding of dimethyl phthalate (DMP) to HSA has a single class of binding site and its binding constants (K) are 4.08 × 103, 3.97 × 103, 3.45 × 103, and 3.20 × 103 L mol−1 at 289, 296, 303, and 310 K, respectively. The Stern-Volmer and Scatchard plots both had two regression curves for HSA-butylbenzyl phthalate (BBP) and HSA-di-2-ethylhexyl phthalate (DEHP), which indicated that these bindings were via two types of binding sites: the numbers of binding site for the first type were lower than for the second type. The binding constants of the first type binding site were higher than those of the second type binding site at corresponding temperatures, the results suggesting that the first type of binding site had high affinity and the second binding site involved other sites with lower binding affinity and selectivity. The thermodynamic parameters of the binding reactions (ΔG°, ΔH° and ΔS°) were measured, and they indicated the presences of hydrophobic forces and hydrogen interactions in the PAEs-HSA interactions, which agreed well with the results from molecular modelling. The alterations of protein secondary structure in the presence of PAEs were confirmed by UV-vis and CD spectroscopy. The time-resolved fluorescence study showed that the lifetime of Trp residue of HSA decreased after the addition of PAEs, which implied that the Trp residue of HSA was the main binding site.  相似文献   

5.
This study investigates efficient optimization of heat fusion conditions between thermoplastics using molecular dynamics (MD) and a response surface method. The heat fusion process between polypropylene and polyethylene and the uniaxial elongation for evaluation of the interfacial bonding strength were modeled using coarse-grained MD simulation. To determine the optimal conditions of heat fusion, experimental points were selected on the basis of a central composite design, and a second-order polynomial response surface was created by setting temperature, pressure, and polymerization degree as explanatory variables and the strength of fused interface as the response. The obtained optimal solution under constrained conditions yielded the highest strength when compared with other experimental points and random points.  相似文献   

6.
The therapeutic profile of many anti-cancer drugs has been improved by their modified distribution through a colloidal carrier system. Hence, bovine serum albumin nanospheres containing 5-fluorouracil were prepared by pH-coacervation methods. To select the most suitable cryoprotector for the formulated nanosphere system, a study on the effect of cryoprotectors in the prevention of particle agglomeration was done. Using glucose and mannitol at various concentrations during freeze drying, glucose at a concentration of 5% was observed to be relatively more effective in the prevention of particle agglomeration than the other cryoprotectors. The carrier capacity was determined through the drug-to-albumin ratio. The particle size of all the drug-loaded batches was analyzed before and after freeze drying. The batch of nanospheres with uniform size distribution, and highest drug loading, was used for other subsequent studies. The effect of surfactant in drug loading was estimated through various concentrations of sodium lauryl sulfate, and it was observed that the surfactant has no influence on drug loading at the selected concentrations. The batch of nanospheres with highest drug loading was evaluated for its in-vitro release, and the drug release was found to be in a bi-phasic pattern. To evaluate the efficacy of 5-fluorouracil-loaded nanospheres against cancer cells, an in vitro cytotoxicity study was carried out using HEp-2 cell lines. The nanosphere-bound drug was observed to produce a better cytotoxic effect than the free drug. The anti-tumor efficacy of drug-loaded nanosphere was investigated in DLA tumor-induced mice models, and the percentage tumor inhibition was relatively higher in animals treated with nanosphere-bound drug than with free drug.  相似文献   

7.
Host demography can alter the dynamics of infectious disease. In the case of perfectly immunizing infections, observations of strong sensitivity to demographic variation have been mechanistically explained through analysis of the susceptible–infected–recovered (SIR) model that assumes lifelong immunity following recovery from infection. When imperfect immunity is incorporated into this framework via the susceptible–infected–recovered–susceptible (SIRS) model, with individuals regaining full susceptibility following recovery, we show that rapid loss of immunity is predicted to buffer populations against the effects of demographic change. However, this buffering is contrary to the dependence on demography recently observed for partially immunizing infections such as rotavirus and respiratory syncytial virus. We show that this discrepancy arises from a key simplification embedded in the SIR(S) framework, namely that the potential for differential immune responses to repeat exposures is ignored. We explore the minimum additional immunological information that must be included to reflect the range of observed dependencies on demography. We show that including partial protection and lower transmission following primary infection is sufficient to capture more realistic reduced levels of buffering, in addition to changes in epidemic timing, across a range of partially and fully immunizing infections. Furthermore, our results identify key variables in this relationship, including R0.  相似文献   

8.
Diet-induced atherosclerotic lesions in the descending thoracic segment of rabbit aorta were analysed ex vivo by micro-attenuated total reflection (ATR)–Fourier transform infrared (FTIR) spectroscopic imaging. The distribution and chemical character of lipid deposits within the arterial wall near intercostal branch ostia were assessed in histological sections from immature and mature rabbits fed cholesterol with or without l-arginine supplements. Previous studies have shown that both these properties change with age in cholesterol-fed rabbits, putatively owing to changes in the synthesis of nitric oxide (NO) from l-arginine. Immature animals developed lesions at the downstream margin of the branch ostium, whereas lipid deposition was observed at the lateral margins in mature animals. Dietary l-arginine supplements had beneficial effects in mature rabbit aorta, with overall disappearance of the plaques; on the other hand, they caused only a slight decrease of the lipid load in lesions at the downstream margin of the ostium in immature rabbits. ATR–FTIR imaging enabled differences in the lipid to protein density ratio of atherosclerotic lesions caused by age and diet to be visualized. Lipid deposits in immature rabbits showed higher relative absorbance values of their characteristic spectral bands compared with those in immature l-arginine-fed rabbits and mature rabbits. The multivariate methods of principal component analysis (PCA) and factor analysis (FA) were employed, and relevant chemical and structural information were obtained. Two distinct protein constituents of the intima–media layer at different locations of the wall were identified using the method of FA. This approach provides a valuable means of investigating the structure and chemistry of complex heterogeneous systems. It has potential for in vivo diagnosis of pathology.  相似文献   

9.
It is a long debated question whether catalytic activities of enzymes, which lie on the millisecond timescale, are possibly already reflected in variations in atomic thermal fluctuations on the pico- to nanosecond timescale. To shed light on this puzzle, the enzyme human acetylcholinesterase in its wild-type form and complexed with the inhibitor huperzine A were investigated by various neutron scattering techniques and molecular dynamics simulations. Previous results on elastic neutron scattering at various timescales and simulations suggest that dynamical processes are not affected on average by the presence of the ligand within the considered time ranges between 10 ps and 1 ns. In the work presented here, the focus was laid on quasi-elastic (QENS) and inelastic neutron scattering (INS). These techniques give access to different kinds of individual diffusive motions and to the density of states of collective motions at the sub-picoseconds timescale. Hence, they permit going beyond the first approach of looking at mean square displacements. For both samples, the autocorrelation function was well described by a stretched-exponential function indicating a linkage between the timescales of fast and slow functional relaxation dynamics. The findings of the QENS and INS investigation are discussed in relation to the results of our earlier elastic incoherent neutron scattering and molecular dynamics simulations.  相似文献   

10.
Abstract

We have investigated the effectiveness and safety of a newly developed biological adhesive for repair of meniscal tear. The adhesive was composed of disuccinimidyl tartrate (DST) as a crosslinker and human serum albumin (HSA) as a hardener. To determine adequate concentration, bonding strength was measured using a tensiometer 5 min after applying the adhesive on the avascular zone tear of porcine meniscus; it was compared with the strengths of commercially available cyanoacrylate-based and fibrin-based adhesives. In vivo examination was performed using Japanese white rabbits, creating longitudinal tears on the avascular zone of meniscus and applying DST–HSA adhesive. Three months after operation the rabbits were sacrificed and tension test and histological evaluation were performed. Bonding strength was measured in three porcine meniscus groups: (i) only suturing, (ii) suturing after applying the adhesive on surface and (iii) suturing using an adhesive-soaked suture. The optimum concentrations were 0.1 mmol of DST and 42 w/v% of HAS. Bonding strength was greatest with cyanoacrylate-based adhesive, followed by DST–HSA adhesive, and fibrin-based adhesive. No inflammation was observed in the synovium or surrounding tissues 3 months after using the DST–HSA adhesive. Bonding strength was greatest with DST–HSA adhesive-soaked suturing group (77 ± 6 N), followed by suturing only group (61 ± 5 N) and surface adhesive application group (60 ± 8 N). The newly developed DST-HSA adhesive is considered safe and may be effective in enforcement of bonding of avascular zone tear of the meniscus.  相似文献   

11.
We have investigated the effectiveness and safety of a newly developed biological adhesive for repair of meniscal tear. The adhesive was composed of disuccinimidyl tartrate (DST) as a crosslinker and human serum albumin (HSA) as a hardener. To determine adequate concentration, bonding strength was measured using a tensiometer 5 min after applying the adhesive on the avascular zone tear of porcine meniscus; it was compared with the strengths of commercially available cyanoacrylate-based and fibrin-based adhesives. In vivo examination was performed using Japanese white rabbits, creating longitudinal tears on the avascular zone of meniscus and applying DST–HSA adhesive. Three months after operation the rabbits were sacrificed and tension test and histological evaluation were performed. Bonding strength was measured in three porcine meniscus groups: (i) only suturing, (ii) suturing after applying the adhesive on surface and (iii) suturing using an adhesive-soaked suture. The optimum concentrations were 0.1 mmol of DST and 42 w/v% of HAS. Bonding strength was greatest with cyanoacrylate-based adhesive, followed by DST–HSA adhesive, and fibrin-based adhesive. No inflammation was observed in the synovium or surrounding tissues 3 months after using the DST–HSA adhesive. Bonding strength was greatest with DST–HSA adhesive-soaked suturing group (77 ± 6 N), followed by suturing only group (61 ± 5 N) and surface adhesive application group (60 ± 8 N). The newly developed DST-HSA adhesive is considered safe and may be effective in enforcement of bonding of avascular zone tear of the meniscus.  相似文献   

12.
This paper presents a molecular dynamics (MDs) study on the linear, buckling and post-buckling behaviour of carbon nanotubes (CNTs) under pure shortening and pure twisting. Its objectives are (i) to clarify the issue about the most correct thickness value to adopt in the simulation of CNTs using shell models and (ii) to evaluate their post-critical strength. Three CNTs with similar length-to-diameter ratio but different atomic structures (zig-zag, armchair and chiral) are selected for this study. Then, MD simulations are performed to investigate the pre-critical, critical buckling and post-critical behaviour of CNTs under pure shortening and pure twisting. Using available analytical formulae derived from shell models, the influence of CNT thickness on their critical strain and critical angle of twist is investigated. Some conclusions are drawn regarding (i) the most appropriate choice of the thickness value to use in shell models and (ii) the effectiveness of post-critical stiffness and strength of CNTs.  相似文献   

13.
Corrosion of the metal oxide surface of cupronickel (CuNi) alloys is a problem in applications such as household water pipes, industrial pipelines, and marine vessels. On other substrates, thin films have been used as barriers to corrosion. Here, the formation of self-assembled monolayers (SAMs) on the CuNi metal oxide surface has been investigated. Stable, well-ordered SAMs of octadecylphosphonic acid (ODPA) and 16-phosphonohexadecanoic acid (COOH-PA) were formed on the metal oxide surface of CuNi foils (55% Cu/45% Ni) using a solution deposition method. The ODPA modified surfaces could be used to provide a non-reactive barrier that inhibits corrosion of the CuNi metal oxide surface. Meanwhile, COOH-PA films could be used for further surface reactions such as surface initiated polymerization, in which polymer coatings are grown directly from a well-ordered film. Film-modified surfaces were characterized using diffuse reflectance infrared Fourier transform spectroscopy, contact angle analysis, and matrix assisted laser desorption ionization time of flight mass spectrometry. The ability of the films to inhibit corrosion by limiting oxidation of the CuNi surface was assessed using cyclic voltammetry.  相似文献   

14.
The life cycle of many endoparasites can be delayed by free-living infective stages and a developmental arrestment in the host referred to as hypobiosis. We investigated the effects of hypobiosis and its interaction with delay in the free-living stages on host-parasite population dynamics by expanding a previous attempt by Dobson & Hudson. When the parasite life cycle does not include free-living stages, hypobiosis destabilizes the host-parasite interactions, irrespective of the assumptions about the regulation of the host population dynamics. Interestingly, the destabilizing effect varies in a nonlinear way with the duration of hypobiosis, the maximal effect being expected for three to five months delay. When the parasite life cycle involves free-living stages, hypobiosis of short or intermediate duration increases the destabilizing effect of the first time delay. However, hypobiosis of a duration of five months or more can stabilize interactions, irrespective of the regulation of the host population dynamics. Overall, we confirmed that hypobiosis is an unusual time delay as it can stabilize a two-way interaction. Contrary to the previous conclusions, such an atypical effect does not require self-regulation of the host population, but instead depends on the existence of free-living stages.  相似文献   

15.
A study has been made of the method of depositing a silicon dioxide coating on the surface of carbon or graphite fibers and of the interface in C/Mg composites manufactured by vacuum pressure infiltration: the mechanical properties of the materials were also studied. For the coating process, the fibers were passed through a toluene solution containing a silicon-based organometallic compound and chloride, following which hydrolysis and pyrolysis of the organometallic compound occurred to form a thin and uniform silicon dioxide coating on the surface of the fibers. The air-stable silicon dioxide coating facilitates wetting and bonding between carbon or graphite fibers and liquid magnesium. The carbon- and graphite-fiber-reinforced magnesium composites were fabricated by vacuum/pressure infiltration processing. Special attention was focused on analysis of the structure of the coating which was deposited by the solution immersion process with the aid of analytic instruments such as SEM, EDAX, TEM, XPS and SAM. Manufacturing processes of C/Mg composites, the interface chemical reaction, and the mechanical properties were also studied.  相似文献   

16.
In this paper, the size effects on the elastic behavior of single crystal silicon nanoplates terminated by {100} surfaces is studied by means of molecular dynamics (MD) using a modified embedded atom method. The results indicate that the {100} surfaces undergo 2 × 1-type reconstruction, which significantly influences the mechanical properties of nanoplates. The simulations are carried out at room temperature and structural relaxation is performed. The effective Young's modulus, in extensional mode, is determined for different thicknesses. The surface energy, surface stress and surface elasticity of layers near the surfaces (non-bulk layers) are obtained. These surface properties are used as inputs for a recently developed two-dimensional plane-stress semi-continuum framework. The framework can be seen as the link between the surface effects calculated by atomistic simulations and the overall elastic behavior. The surface properties of nanoplates of a few layers are shown to deviate from thicker plates, suggesting a size dependence of surface parameters and, especially, surface energy. For thicknesses below 3 nm, there is a difference between the effective Young's modulus, calculated by the semi-continuum approach and that calculated directly by MD. The difference is due to the size dependence of surface parameters.  相似文献   

17.
18.
The object of the present paper is to investigate plane SH waves through a magneto-elastic crustal layer based over an elastic, solid semi space under the influence of surface stress on the free surface of the crustal layer and irregularity of the interface. Two types of irregularities of the interface namely, rectangular and parabolic have been considered. Modulations of wave velocity due to the presence of surface stress, irregularity and the magnetic field have been studied separately. Their combined effect has also been investigated. Graphs are drawn to highlight some important peculiarities. It is observed that surface stress, irregularity and magnetic field have their respective role to play in the propagation of SH waves in the crustal layer. Further modulation of wave velocity occurs due to their combined effect.  相似文献   

19.
The biomechanisms that govern the response of chondrocytes to mechanical stimuli are poorly understood. In this study, a series of in vitro tests are performed, in which single chondrocytes are subjected to shear deformation by a horizontally moving probe. Dramatically different probe force–indentation curves are obtained for untreated cells and for cells in which the actin cytoskeleton has been disrupted. Untreated cells exhibit a rapid increase in force upon probe contact followed by yielding behaviour. Cells in which the contractile actin cytoskeleton was removed exhibit a linear force–indentation response. In order to investigate the mechanisms underlying this behaviour, a three-dimensional active modelling framework incorporating stress fibre (SF) remodelling and contractility is used to simulate the in vitro tests. Simulations reveal that the characteristic force–indentation curve observed for untreated chondrocytes occurs as a result of two factors: (i) yielding of SFs due to stretching of the cytoplasm near the probe and (ii) dissociation of SFs due to reduced cytoplasm tension at the front of the cell. In contrast, a passive hyperelastic model predicts a linear force–indentation curve similar to that observed for cells in which the actin cytoskeleton has been disrupted. This combined modelling–experimental study offers a novel insight into the role of the active contractility and remodelling of the actin cytoskeleton in the response of chondrocytes to mechanical loading.  相似文献   

20.
The aqueous-core enclosed in lipid nanoballoons integrating multiple emulsions of the type water-in-oil-in-water mimic, at least in theory, the environment within viable cells, thus being suitable for housing hydrophilic protein entities such as bioactive proteins, peptides and bacteriophage particles. This study reports a complete physicochemical characterization of optimized biomimetic aqueous-core lipid nanoballoons housing hydrophilic (BSA) protein entities, evolved from a statistical 23×31 factorial design study (three variables at two levels and one variable at three levels) that was the subject of the first paper of a series of three, aiming at complete stabilization of the three-dimensional structure of protein entities attempted via housing the said molecular entities within biomimetic aqueous-core lipid nanoballoons integrating a multiple (W/O/W) emulsion. The statistical factorial design followed led to the production of an optimum W/O/W multiple emulsion possessing quite homogeneous particles with an average hydrodynamic size of (186.2?±?2.6) nm and average Zeta potential of (?36.5?±?0.9) mV, and exhibiting a polydispersity index of 0.206?±?0.014. Additionally, the results obtained for the diffusion coefficient of the lipid nanoballoons integrating the optimized W/O/W multiple emulsion were comparable and of the same order of magnitude (10?12 m2 s?1) as those published by other authors since, typically, diffusion coefficients for molecules range from 10?10 to 10?7 m2 s?1, but diffusion coefficients for nanoparticles are typically of the order of magnitude of 10?12 m2 s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号