首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 773 毫秒
1.
在三聚氰胺(ME)和氰尿酸(CA)分子自组装合成三聚氰胺氰尿酸盐(MCA)的过程中加入二乙基次磷酸铝(ADEPH)合成一种改性MCA,磷-氮协同阻燃剂MCA-ADEPH,并对其结构进行表征;在尼龙6(PA6)中加入MCA和改性MCA,通过熔融共混的方法制备无卤阻燃PA6/MCA和PA6/MCA-ADEPH复合材料,并研究其阻燃性能和力学性能。结果表明,MCA-ADEPH中ADEPH对MCA只是物理改性,ADEPH可细化MCA粒径;MCA-ADEPH可提高PA6/MCA的阻燃性能,MCA和ADEPH可从气相和凝聚相协同阻燃PA6;在提高PA6阻燃性能的同时,PA6的力学性能并没有下降。  相似文献   

2.
三聚氰胺氰尿酸盐的原位制备及填充PA6的阻燃与力学性能   总被引:2,自引:0,他引:2  
采用反应性加工技术实现了三聚氰胺氰尿酸盐(MCA)的原位制备及阻燃尼龙6(PA6)复合材料的一体化制备。其中SEM分析表明,PA6基体树脂中原位生成的MCA为长纤状粒子,长径比高达20。当阻燃剂添加量为10%(质量分数,下同)时,材料的阻燃性能达UL94V-0(1.6 mm&3.2 mm)级,拉伸强度为70.6 MPa,缺口冲击强度为5.0 kJ/m2,远优于传统MCA阻燃PA6。  相似文献   

3.
袁文聪  魏珊珊  张夏宇 《包装工程》2020,41(13):167-172
目的用一种新的方法合成三聚氰胺氰尿酸盐(MCA),并探究其在聚酰胺6(PA6)中的应用。方法将三聚氰胺(MA)、氰尿酸(CA)和少量水混合成膏状物,并使其在室温下反应一定时间,再加入少量MCA,使其继续反应以制备MCA阻燃剂。将制备的MCA与PA6熔融共混制备阻燃PA6复合材料,用FTIR,XRD,TG,SEM对制备的MCA进行表征,对阻燃PA6复合材料的阻燃和力学性能进行测试。结果所制MCA的FTIR和XRD特征峰与在水中合成MCA的特征峰一致;所合成的MCA最大热失重温度达到451.7℃。在阻燃剂质量分数为8%时,阻燃PA6复合材料的极限氧指数(LOI)为29%,阻燃性能达到UL-94V0级。随着阻燃剂含量的增加复合材料的力学性能有所降低,当阻燃剂质量分数为8%时,拉伸强度为66.4 MPa,冲击强度为4.7 kJ/m~2。结论用文中方法合成的MCA具有工艺简单、不需加热、耗水量低等优点,大大提高了PA6复合材料的阻燃性能。  相似文献   

4.
为了提高玻璃纤维(GF)增强聚丙烯(PP)复合材料(GF/PP)的阻燃性能,通过在蒙脱土(MMT)悬浮液中进行三聚氰胺氰尿酸盐(MCA)分子自组装制备了新型协效成炭剂MCA-MMT,并采用FTIR、XRD、SEM和TGA对MCA-MMT的结构及热性能进行了表征;将MCA-MMT、无卤膨胀型阻燃剂与GF/PP熔融共混制备了阻燃复合材料MCA-MMT/(GF/PP),通过极限氧指数(LOI)测试、垂直燃烧试验和锥形量热测试研究了MCAMMT对GF/PP的阻燃效果和阻燃机制,并测试了复合材料的力学性能。结果表明:MMT的加入会影响氰尿酸和三聚氰胺在MCA合成过程中的氢键作用,干扰和抑制大平面氢键网络的形成,减少MCA氢键复合体的分子体积,使颗粒变小。MCA-MMT/(GF/PP)的UL-94防火等级达到V-0级,LOI为31.3%。MCA-MMT的阻燃效率高于传统MCA的,可降低材料燃烧的热释放程度和总烟释放量,使复合材料的阻燃性能提高,其阻燃机制为片层结构的MMT可提高MCA的成炭量,使MCA-MMT/(GF/PP)燃烧后能形成致密的残留炭层。MCA-MMT/(GF/PP)的拉伸、冲击强度与MCA/(GF/PP)的相比并未下降。  相似文献   

5.
以无卤阻燃剂三聚氰胺氰尿酸盐(MCA)为改性剂, 采用熔体共混法制备了改性聚苯醚/聚苯乙烯 (PPO/PS)复合材料。通过XRD和SEM对MCA-PPO/PS复合材料的微观结构进行了表征, 重点研究了复合材料的燃烧性能和流动性能。研究发现: 在复合材料的制备和加工过程中MCA的微观结构并没有发生任何变化, 因此复合材料中MCA的阻燃作用不变。MCA在复合材料中分散比较均匀, 无明显团聚现象。与纯PS相比, 质量比为100:100的PPO/PS在燃烧时的氧指数增加5.4%, 热释放速率峰值降低33.1%, 但总烟释放量增加近1.5倍。在PPO/PS中加入MCA后得到的复合材料的阻燃性能随着MCA用量增加而逐渐增强, 发烟量大幅度降低, 同时熔体黏度减小, 流动性增加。在MCA-PPO/PS复合材料中加入5%、 25%和45%质量分数的MCA可分别使复合材料的总烟释放量比PPO/PS降低43.7%、 82.6%和91.6%。PPO/PS的阻燃机制为凝聚相成炭阻燃, 随着MCA用量增加, MCA-PPO/PS复合材料的阻燃机制逐渐转变为气相稀释和对聚合物基体的冷却效应。加入MCA对MCA-PPO/PS复合材料可同时起到阻燃、 抑烟和改善加工流动性的作用。  相似文献   

6.
选择三聚氰胺(ME)和三聚氰胺氰尿酸盐(MCA)分别与聚磷酸铵(APP)复配制备阻燃环氧树脂试样,并以石墨烯为增强剂对最优阻燃体系进行增强。结果表明:当APP∶ME=3∶1(质量比)时为最佳阻燃体系,极限氧指数达到30.2%,垂直燃烧等级达到UL 94V-0级,拉伸强度为55.4MPa,冲击强度为8.3kJ/m~2。热重结果显示添加阻燃剂虽然降低了环氧树脂的初始分解温度,但随着温度进一步升高,体系具有更好的热稳定性。阻燃环氧树脂材料中加入适量的石墨烯可使其阻燃性能略有提高,而力学性能得到大幅度提升。  相似文献   

7.
洪晓东  代文娟  赵爽  梁兵 《化工新型材料》2014,(11):193-195,198
对膨胀阻燃剂复合阻燃环氧树脂进行了深入研究。选择聚磷酸铵(APP)、三聚氰胺氰尿酸盐(MCA)两种阻燃剂复配制备了阻燃环氧树脂试样,结果表明:APP与MCA的最佳质量比为3∶1。基于APP和MCA的最佳比例,分别选择红磷(P)、硼酸锌(ZB)和季戊四醇(PT)作为协效剂,结果表明,P的加入使得试样的氧指数提高最大,但力学性能下降很大;PT与APP、MCA具有最佳协同效应,最佳配方为:80%树脂,18%APP/MCA(质量比为3∶1),2%的PT,试样的氧指数为29.4%,垂直燃烧达到UL94V-0级,拉伸强度为33.3MPa,冲击强度为5.8kJ·m-2。  相似文献   

8.
阻燃型PA6/PP/硅灰石复合材料的制备及阻燃机理研究   总被引:9,自引:0,他引:9  
采用固相力化学方法制备的聚丙烯接枝羟甲基丙烯酰胺作增容剂,以高效低毒的三聚氰胺三聚氰酸盐(MCA)作阻燃剂制备了阻燃型硅灰石填充尼龙6/聚丙烯复合材料,该复合材料具有很好的力学和阻燃性能,当MCA与聚合物质量比为10%时,该复合材料的极限氧指数达到31,拉抻强度为54.1MPa,悬臂梁缺口冲击强度为59.7J/m。通过TG和FT-IR分析对阻燃机理作了初步的探讨。  相似文献   

9.
含硅阻燃剂与膨胀型阻燃剂的协同阻燃性   总被引:7,自引:0,他引:7  
采用测量极限氧指数(LOI)和锥形量热仪动态燃烧两种方法评价了含硅阻燃剂(SFR-H)与高聚磷酸铵/三聚氰胺氰尿酸盐(APP/MCA)膨胀阻燃体系在聚乙烯基体中的协同阻燃性,并通过红外光谱(FT-IR)、X射线衍射(WAXD)和扫描电镜(SEM)分析炭层结构和成分来研究其协同阻燃机理。研究表明,SFR-H/APP/MCA协同阻燃体系可明显提高聚乙烯的LOI值和降低燃烧热释放速率,具有较好的协同阻燃性,两者在燃烧过程中一起热氧化分解,形成陶瓷状含硅、硼、磷元素的化合物,对表面膨胀炭层起着增强作用,同时也提高了膨胀炭层的热氧稳定性和阻隔性能,从而提高了阻燃效果。  相似文献   

10.
采用垂直燃烧仪、氧指数仪、马弗炉和烟密度箱对三聚氰胺氰尿酸盐(MCA)、红磷及成碳剂FR 600协同阻燃乙丙橡胶的阻燃性能进行了分析表征。研究结果表明,MCA、红磷及FR 600有显著的协同阻燃效应。与MCA阻燃乙丙橡胶相比,红磷和FR 600的加入可以提高体系的成碳率,使得碳层更紧密,乙丙橡胶的氧指数和垂直燃烧等级得到提高。FR 600可以有效降低乙丙橡胶的烟密度。MCA、红磷及成碳剂FR 600的最佳质量配合比分别为84∶24∶12。  相似文献   

11.
三聚氰胺氰尿酸盐对锦纶6的抗滴落阻燃改性研究   总被引:2,自引:0,他引:2  
通过在聚己内酰胺(PA6)切片中加入不同比例的三聚氰胺氰尿酸盐(MCA)或三聚氰胺多聚磷酸盐(MPP)-MCA共混纺丝,改善锦纶6的抗滴落阻燃性.研究发现,加入30%(wt)MCA的PA6仍具有可纺性,且随MCA添加量的增加,极限氧指数(LOI)增加,纤维的物理力学性能下降,阻燃剂的加入使聚合物的热稳定性变差,含有MCA-MPP共混物的纤维阻燃性及物理力学性能均好于单纯含有MCA的纤维.  相似文献   

12.
以有机硅树脂材料对Al_2O_3纤维进行表面改性,并采用经改性处理的Al_2O_3纤维和三聚氰胺对聚甲醛(POM)进行阻燃,利用傅里叶变换红外光谱仪、接触角测试仪、锥形量热仪等对改性前后的Al_2O_3纤维和阻燃POM复合材料进行表征。结果表明:m(POM)∶m(改性Al_2O_3纤维)∶m(三聚氰胺)为60∶30∶5时,阻燃POM复合材料的极限氧指数达到42%,垂直燃烧UL-94测试达到V-1级别,拉伸强度达到40.4MPa。  相似文献   

13.
以三聚氰胺尿酸盐(MCA)和二乙基次磷酸铝(ADP) 2种具有协效作用的为阻燃剂、氢化苯乙烯-丁二烯嵌段共聚物接枝马来酸酐(SEBS-g-MA)为相容剂,制备了充油-氢化苯乙烯-丁二烯嵌段共聚物/聚苯醚(O-SEBS/PPO)复合材料,并研究了其阻燃性能和力学性能。结果表明,当SEBS-g-MA用量为5.6%、ADP/MCA质量比为1/3、ADP/MCA总添加量为30%时,阻燃复合材料的UL94垂直燃烧级别达到V-0、极限氧指数为29%、断裂伸长率为(525±23)%、硬度为(69±1)A、拉伸强度为(6.80±0.1) MPa。热失重分析和锥形量热仪测试发现,ADP/MCA和SEBS-g-MA的加入提高了材料的初始分解温度和残炭量,降低了材料的峰值放热率(PHRR)、总放热率(THR)、生烟量(SPR)和总生烟量(TSP)。  相似文献   

14.
通过改进现有制备方法,合成了一种高热稳定性的聚焦磷酸哌嗪(PAPP),并将其与埃洛石纳米管(HNTs)、三聚氰胺氰尿酸盐(MCA)复配为P-N-Si系膨胀型阻燃剂,协效阻燃环氧树脂(EP)。通过极限氧指数、垂直燃烧、锥形量热仪、SEM等测试方法,考察了膨胀型阻燃剂对EP阻燃性能的影响。结果表明,复配阻燃剂的引入形成了致密、连续的膨胀型炭层,从凝聚相和气相分别提高了环氧树脂的阻燃效率,有效降低了环氧树脂的放热速率和放热量,以及有毒气体的释放,当PAPP/HNTs/MCA配比为7∶1∶2时,极限氧指数达34.3%,UL-94达V-0级,相比于纯EP,残炭量显著增加,热释放速率(HRR)峰值下降了60.56%,总热释放量(THR)及有毒气体的排出大幅度减少。热重分析结果表明,阻燃改性后EP的初始分解温度降幅ΔT为4.4%,改性后的EP仍具有较高的热稳定性。  相似文献   

15.
采用双酚A双(二苯基)磷酸酯(BDP)/三聚氰胺尿酸盐(MCA)/3.5水硼酸锌(ZnB)复合阻燃剂制备了无卤阻燃的聚苯醚电线电缆专用料,对材料的阻燃性能、热稳定性、残炭结构及力学性能进行了研究,并对阻燃机理进行了讨论。实验结果表明,复合阻燃剂的加入改变了燃烧后残炭的结构,提高了材料的阻燃性能,材料的极限氧指数(LOI)从未加阻燃剂的24.5提高到29.4,水平燃烧级别从FH-3-37mm/min提高到FH-1,但材料的力学性能出现不同程度的降低。  相似文献   

16.
三聚氰胺氰尿酸盐用途广泛,采用含有氰尿酰胺的粗制氰尿酸代替精制氰尿酸与三聚氰胺制备三聚氰胺氰尿酸盐,用于尼龙阻燃改性时,不仅可保持良好阻燃性能,而且长时间在高热高湿环境下也不产生析出起霜现象,此简易制法生产成本低。  相似文献   

17.
改性三聚氰胺氰尿酸盐阻燃PA6的研究   总被引:10,自引:0,他引:10  
用改性三聚氰胺氰尿酸盐阻燃剂阻燃尼龙6。利用改性MCA在与PA6复合过程中可熔融、软化、变形的特性.实现阻燃剂在树脂中的超细均匀分散;研究了改性MCA的凝聚相阻燃增效机理。  相似文献   

18.
以三聚氰胺和氰尿酸为原料,采用溶剂热方法制备出纳米三聚氰胺氰尿酸盐(NMC)。分别利用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电镜(SEM)等手段对其组成和结构进行表征,研究了不同溶剂(蒸馏水、无水乙醇和苯)、不同类型的表面活性剂(十二烷基硫酸钠(SDS)、十六烷基三甲基溴化铵(CTAB)、壬基酚聚氧乙烯醚(NP))、反应温度和反应时间对产物粒径的影响。结果表明,只有用水为溶剂才能合成出NMC;采用苯和无水乙醇溶剂时产物的粒径较大,为微米级。用CTAB和SDS为表面活性剂制备的产物平均粒径约为100 nm,而用NP活性剂制备的产物平均粒径则达到3.1μm。制备NMC合适的反应温度为150℃,反应时间为1-3 h。比较了NMC和微米级三聚氰胺氰尿酸盐(MMC)在增韧酚醛泡沫中的阻燃性能和力学性能。结果表明,与MMC增韧酚醛泡沫相比,NMC阻燃增韧酚醛泡沫的氧指数和弯曲强度都有所提高。  相似文献   

19.
将三聚氰胺聚磷酸盐(MPP)和次磷酸铝(AP)阻燃剂添加到木纤维/酚醛树脂(WF/PR)复合材料中,通过人造板热压工艺技术制备阻燃高密度纤维板(MPP-AP-WF/PR)复合材料,探索了MPP和AP组成复配阻燃剂时,MPP-AP-WF/PR复合材料达到最佳阻燃性能时MPP与AP的最佳质量比.采用弯曲强度、吸水厚度膨胀率...  相似文献   

20.
采用聚磷酸铵(APP)与不同比例三聚氰胺(MA)和三嗪成炭剂(CFA)复配对环氧树脂进行阻燃改性。系统研究了不同配比阻燃剂(总量保持40wt%)的加入对环氧树脂流变特性、固化行为、热机械性能、力学性能及阻燃性能的影响。将优化后的阻燃改性环氧树脂用于制备玻璃纤维增强环氧树脂复合材料(GFRC),对并其力学和阻燃性能进行了研究。结果表明,APP单独与MA或CFA复配改性环氧树脂并未表现出明显的协同阻燃效应,但它们组成的三元复配阻燃体系(30wt%APP-5wt%MA-5wt%CFA)具有良好的协同阻燃效应。相比未改性环氧树脂,APP-MA-CFA改性环氧树脂的极限氧指数(LOI)由18.0%提高到了50.2%,热释放峰值速率(PHRR)下降了84%,总热释放量(THR)下降了78%。树脂基体中加入阻燃剂后,GFRC的力学性能有所下降,尤其是层间剪切强度。同样地,基于APP-MA-CFA复配改性环氧树脂的GFRC表现出最佳阻燃性能,相比未改性的GFRC,其LOI值由22.8%提高到了66.0%,PHRR由354 kW/m2下降到93 kW/m2,THR由49.3 MJ/m2下降到22.8 MJ/m2。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号