首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1 200 MPa级HSLA钢的SH-CCT曲线及其热影响区组织与性能   总被引:1,自引:1,他引:0  
为在工程应用中对焊接工艺的合理选取与制定提供理论和试验依据,采用焊接热模拟技术研究了800~500℃冷却时间(t8/5)对1 200 MPa级低合金高强钢焊接热影响区粗晶区(CGHAZ)显微组织和性能的影响.结果表明:t8/5为6~20 s时,该钢热影响区的粗晶区组织为板条马氏体,硬度为477~456 HV5;随着冷却时间的延长,组织中开始出现板条贝氏体,在t8/5为60 s时硬度下降到380 HV5;当t8/5为60~600 s时,粗晶区组织为板条贝氏体和粒状贝氏体,硬度为380~300 HV5;t8/5600 s时粗晶区组织主要为粒状贝氏体,硬度为300~315 HV5.试验钢碳当量为0.626%,冷裂纹敏感系数为0.335%,说明其淬硬倾向较大,焊接热影响区容易产生裂纹.  相似文献   

2.
为研究焊接对800 MPa级Ti、Nb复合微合金化析出强化超细晶粒钢组织性能的影响.运用Gleeble3500热模拟试验机,对实验钢进行单道次焊接热循环试验,并研究冷却速度、冷却时间t8/5对焊接热影响区粗晶区(CGHAZ)组织、性能的影响.结果表明:冷却速度5~15℃/s,CGHAZ的组织为贝氏体,冷却速度进一步增大,会出现马氏体.随着冷却时间t8/5的增加,原奥氏体晶粒尺寸逐渐增加,硬度值逐渐降低,冲击韧性先上升后下降.t8/5为20~120 s时,CGHAZ显微硬度(223~250.4 HV)均小于母材的显微硬度(270.6 HV),出现软化现象,t8/5为20 s时,冲击吸收功最高,为18.2 J,但仅有母材的25.3%.经历焊接热循环后,奥氏体晶粒粗化以及CGHAZ出现贝氏体组织是导致脆化的主要原因.  相似文献   

3.
采用Gleeble3500热-力学模拟试验机,研究了在不同焊接热循环条件下,X100级管线钢焊接粗晶区组织形态的变化规律.实验结果表明,X100级管线钢焊接粗晶区组织主要有粗大的粒状贝氏体、贝氏体铁素体和马氏体.当焊后冷却速度低于2℃/s时,焊接粗晶区组织为粒状贝氏体;当焊后冷却速度为2~5℃/s时,组织为贝氏体铁素体;当焊后冷却速度高于5℃/s时,粗晶区开始出现马氏体组织.  相似文献   

4.
X80管线钢焊接粗晶区韧化因素的研究   总被引:1,自引:0,他引:1  
采用热模拟技术研究了不同热循环对X80管线钢焊接粗晶区低温冲击韧度的影响.实验结果表明,随着冷却时间t8/5的增加,第二相粒子的数量减少且出现聚集现象,晶粒尺寸增加,但是当t8/5小于6.8s时,粒状贝氏体含量较高,板条束贝氏体细小且方向性较弱,试样的冲击韧性较高;而当t8/5超过6.8s后,粒状贝氏体含量逐渐下降,板条贝氏体逐渐粗大、平行,试样韧性又逐渐降低.M-A组元由于其含量低,尺寸小,对韧性的影响不显著.因此为提高焊接粗晶区的韧性,应采用小线能量和合适的预热温度来控制晶粒尺寸和组织形态.  相似文献   

5.
在热模拟试验机上对Q690D高强度钢进行不同冷却速率的热模拟试验,绘制动态连续冷却转变曲线,用光学显微镜观察该钢的显微组织,用维氏硬度计测试其维氏硬度。结果表明:当冷却速率小于0.1℃/s时,Q690D高强度钢的组织基本为珠光体、铁素体和少量贝氏体;当冷却速率为0.5℃/s时,珠光体消失,组织全部为贝氏体;当冷却速率为3℃/s时,组织中出现马氏体;当冷却速率增大至8℃/s时,贝氏体几乎全部消失,基体组织基本为马氏体;当冷却速率大于10℃/s时,组织全部为马氏体,得到马氏体临界转变冷却速率为10℃/s。  相似文献   

6.
陈玉华  王勇 《材料科学与工艺》2009,17(2):178-180,185
为探讨在役焊接这种严酷的焊接条件下管线钢焊接热影响区显微组织的变化,采用焊接热模拟技术、金相分析及透射电镜对比研究了X70管线钢在役焊接热影响区和常规焊接热影响区的金相组织和精细结构.结果表明,在役焊接的快速冷却只对粗晶区的金相组织产生了较大影响,而对过渡区、细晶区和类母材区的金相组织几乎没有影响.金相显微镜下两者粗晶区的组织均为贝氏体铁素体和粒状贝氏体,但各组织的形态和数量不同.在透射电镜下观察,两者粗晶区的精细结构有较大差异,在役焊接粗晶区生成了少量细小的横穿贝氏体铁素体板条的板条马氏体,常规焊接粗晶区生成了少量的块状铁素体组织.  相似文献   

7.
通过焊接热循环模拟试验,对试样进行微观组织结构观察和低温韧性测试,研究了不同条件的热循环过程对一种低合金高强度船体钢组织及性能的影响。结果表明:在一定的焊接线能量范围内,t8/5对试验钢的组织及性能影响不大,模拟粗晶区组织主要为马氏体和贝氏体;峰值温度对试验钢热影响区组织及低温韧性影响较大,粗晶区为热影响区薄弱环节,二次热循环可提高试验钢粗晶区的低温韧性;试验钢经历两次粗晶区热循环后仍保持有细小的板条结构及条间奥氏体,冲击韧性较为稳定。  相似文献   

8.
针对国内某钢厂最新研制的Q890高强钢,采用三种不同的热输入对其进行气体保护焊接,研究了不同热输入对焊缝金属组织、硬度及冲击韧性的影响.结果表明,3种热输入下,焊缝组织主要以板条贝氏体为主,并含有粒状贝氏体、少量的板条马氏体和残余奥氏体.随着热输入的增大,焊缝组织中贝氏体铁素体板条粗化,板条马氏体逐渐减少,而粒状贝氏体逐渐增多,部分残余奥氏体由薄膜状向块状转变;焊缝金属硬度随着热输入的增大而下降;焊缝金属的冲击韧性亦呈逐渐下降的趋势.  相似文献   

9.
为了研究800MPa级低合金高强钢焊接粗晶区的组织转变规律,采用热模拟的方法,应用L78RITA相变热膨胀仪模拟了实验用钢的两次焊接热循环过程,对应的焊接线能量约为20kJ/cm。建立了该钢的奥氏体连续加热转变曲线(TTA),并对组织、硬度和热膨胀曲线进行分析,结果显示,实验用钢一次热循环粗晶区组织为板条马氏体和贝氏体,硬度为318HV,当第二次热循环峰值温度(Tp2)为1000℃时,第一次热循环后的组织发生完全重结晶,得到细小的贝氏体组织,硬度下降,当Tp2为900℃时发生部分重结晶,硬度最低(239HV),当Tp2为800℃时,在晶界和晶内相界生成链状分布的M-A组元,而Tp2小于A′c1时发生回火作用,M-A组元分解并析出碳化物。实验用钢的热影响区未出现组织遗传现象,因此为了更准确判断组织转变类型,应结合TTA曲线对焊接热影响区组织转变进行分析。  相似文献   

10.
通过Gleeble热模拟试验,研究了一种低碳铜沉淀纳米相强化铁素体钢焊接热影响区组织及性能,测试了试验钢粗晶区焊接CCT曲线。结果表明,试验钢焊接粗晶区组织主要为贝氏体,其它区域均为铁素体;铜沉淀纳米强化相随热循环不同而发生不同演变,从而引起热影响区性能变化。试验钢粗晶区冲击功及硬度与基体相当,细晶区、临界区及亚临界区冲击功均高于基体,有一定软化现象。在试验t8/5范围内,试验钢粗晶区对焊接热输入较为敏感,随t8/5的增加,组织粗化,并产生较多的粒状贝氏体组织,冲击功降低明显。  相似文献   

11.
采用Gleeble1500热模拟机,物理模拟中国低活化马氏体(CLAM)钢焊接热影响区粗晶区(CGHAZ)的冷却过程,结合组织观察、Thermo-calc热力学软件计算和硬度测试等手段分析了冷速ωc对CGHAZ的组织演变及硬度的影响,并绘制了CLAM钢的SH-CCT图。结果表明:CLAM钢的CGHAZ中过冷奥氏体仅发生低温板条马氏体(LM)及先共析铁素体(α铁素体)转变。0.25℃/s为CGHAZ过冷奥氏体发生完全LM相变的临界冷速。当ωc>0.25℃/s时,CGHAZ的组织除LM外,还含有少量的δ铁素体,δ铁素体是δ→γ相变阶段转变不充分而残留至室温的组织,在该冷速范围内粗晶区的组织形态变化不明显。当ωc<0.25℃/s时,由于发生γ→α转变,CGHAZ的组织为α铁素体及LM的混合组织,随着冷速的降低,α铁素体含量增加;当ωc=0.04℃/s时,CGHAZ的组织已完全转变为α铁素体和碳化物的混合组织。  相似文献   

12.
利用Gleeble-1500热模拟机、光学显微镜(OM)、扫描电镜(SEM)以及透射电镜(TEM)对渗碳钢23CrNi3Mo的连续冷却相变规律以及等温转变规律进行了研究,并基于此,设计了一种新的热处理冷却工艺。研究结果表明,渗碳后试样以0.05℃/s和0.1℃/s的冷速连续冷却时,表面渗碳层为高碳马氏体组织,过渡区为高碳马氏体+下贝氏体的混合组织,基体为下贝氏体组织;渗碳试样外表面在高温段以较低的冷速(0.05~3℃/s)连续冷却时,碳化物沿晶界析出形成网状碳化物;无渗碳的实验钢的贝氏体等温转变温度范围为375~450℃。新的热处理冷却工艺为:试样在880℃保温完成后,采用快速冷却工艺,以冷速大于等于5℃/s进入贝氏体转变温度区,直接入450℃的盐浴炉,入炉后均温5~10min,在低温转变区即贝氏体转变温度区间,采用慢速冷却工艺,冷速小于等于0.1℃/s。获得的试样渗碳层深度为1.4mm,国外的阿特拉斯钎头渗碳层深度为1.2mm,两者基本相同,但前者硬度分布更加平缓;两者表面显微组织均为高碳马氏体组织,过渡区均为马氏体加下贝氏体组织,基体均为贝氏体组织。通过设计新的热处理冷却工艺,获得了与国外钎头相同水平的试样。  相似文献   

13.
用Formastor-FII相变仪研究了钛微合金化TRIP在不同开冷温度下的连续冷却相变,建立了实验钢的连续冷却转变曲线,分析了铁素体、贝氏体及马氏体的相变规律.结果表明,随着冷却速率的增加,实验钢依次经过铁素体、贝氏体及马氏体相区,在较宽的冷却速率范围内,均可获得贝氏体及马氏体组织,其Ms点为450℃左右;随着开冷温度的降低或冷却速率的提高,实验钢的铁素体及贝氏体开始转变温度降低,抑制了铁素体及贝氏体相变;随着冷却速率的增加,实验钢的显微组织由铁素体+粒状贝氏体逐步转变为板条贝氏体+板条马氏体及板条马氏体组织;当冷却速率较低时,铁素体由晶内铁素体和晶界铁素体组成,晶内铁素体形核质点为复杂的氧化物及硫化物.  相似文献   

14.
采用DIL805L型淬火膨胀仪测定了780 MPa级低碳贝氏体钢的连续冷却转变(CCT)曲线,研究了冷却速度对该钢组织转变和硬度的影响。结果表明:780 MPa级低碳贝氏体钢在冷却速度小于5℃·s~(-1)时,转变产物为贝氏体;当冷却速度大于5℃·s~(-1)时,转变产物中开始出现马氏体组织,且随着冷却速度的增加,马氏体逐渐增多,贝氏体逐渐减少;随着冷却速度的增加,试验钢的显微硬度逐渐增大,在冷却速度为5℃·s~(-1)时,硬度值有明显大幅度的增加;透射电镜分析结果显示冷却速度为5℃·s~(-1)时,在贝氏体组织内,位错堆积,并在晶界处最先形成马氏体。  相似文献   

15.
采用10 kJ/cm和15 kJ/cm两种焊接热输入对Q1100超高强钢进行熔化极气体保护焊,研究焊接接头的组织性能及局部腐蚀行为。结果表明:两种热输入焊接接头的焊缝组织主要为针状铁素体和少量的粒状贝氏体,粗晶区组织均为板条贝氏体,细晶区组织均为板条贝氏体和粒状贝氏体,临界相变区组织为多边形铁素体、马奥岛和碳化物的混合组织。两种热输入焊接接头中电荷转移电阻均为母材>热影响区>焊缝区,母材耐蚀性最好,热影响区次之,焊缝区耐蚀性最差。在腐蚀过程中,焊缝区作为阳极最先被腐蚀,当腐蚀一定时间后,腐蚀位置发生改变,阳极腐蚀区域转移到母材区,而焊缝区作为阴极得到保护。热输入为10 kJ/cm时,焊接接头具有更好的低温韧性和耐蚀性,其焊缝和热影响区-40℃冲击功分别为46.5 J和30.2 J。  相似文献   

16.
测定了一种汽车用微合金非调质钢的过冷奥氏体连续冷却转变曲线,研究了冷却速率对相变组织及显微硬度的影响。结果表明:试验钢的临界点Ac3为838℃,Ac1为732℃;当冷却速率小于0.2℃/s时,试验钢的连续冷却转变产物为铁素体、珠光体和贝氏体;当冷却速率为0.2℃/s时,转变产物中出现马氏体;当冷却速率为5℃/s时,铁素体、珠光体消失,转变产物为贝氏体和马氏体;随着冷却速率的增大,马氏体含量逐渐增多,贝氏体含量逐渐减少,甚至完全消失;当冷却速率增大至20℃/s时,转变产物均为马氏体;随着冷却速率的增大,试验钢的显微硬度呈先快速增长,后增长速率变缓的趋势。  相似文献   

17.
基于无缝钢管PQF工艺并结合其动态相变规律研究结果,制定P91热轧无缝钢管TMCP,使用Gleeble1500-D热模拟试验机对P91钢进行TMCP穿孔、连轧及定径热变形模拟,使用SEM和TEM观察变形各阶段的精细组织结构,分析P91钢管在TMCP条件下的微观组织遗传规律,研究了形变奥氏体的细化、强化及其马氏体相变行为。结果表明:对于P91钢管,采用TMCP,穿孔及连轧真应变达1.8的高温大变形易实现再结晶、细化形变奥氏体晶粒,990℃低温定径变形累积强化形变奥氏体、诱导马氏体相变,结合1℃/s的控制冷却得到了细化至0.1~0.5 μm的马氏体板条。还发现,板条内的亚结构为2~20 nm的微细孪晶及高密度位错,析出了20 nm×100 nm的(Cr,Fe,Mo)23C6纳米级碳化物。这种组织特征遗传了P91钢管TMCP细晶强化、析出强化及相变强化效果,大大提高了P91钢管的力学性能,并由实际生产验证了P91钢管TMCP的可行性。  相似文献   

18.
使用热膨胀仪、SEM电镜、EBSD、硬度、拉伸和冲击等观察和检测手段,研究了淬火冷却速率对海洋平台用Ni-Cr-Mo-B钢的显微组织、有效晶粒尺寸(EGS)和力学性能的影响。结果表明,不同冷却速率的合金钢,其显微组织包括板条马氏体(LM)、板条贝氏体(LB)、粒状贝氏体(GB)和F(铁素体)。随着淬火冷却速率的降低合金钢的显微组织分别为LM(>20℃/s)、LM/LB(20~2℃/s)、LB(2~1℃/s)、LB/GB(1~0.2℃/s)、GB/F(0.2~0.02℃/s),其硬度由100℃/s时的393HV逐渐降低至0.02℃/s时的291HV。回火后合金钢的屈服强度由水冷的836 MPa降低至炉冷的726 MPa,而延伸率几乎不变,约为20%。油冷合金钢的-60℃冲击功最高(199 J),水冷次之(54 J),空冷和炉冷合金钢的最低(<30 J)。其原因是,油冷合金钢具有LMT/LBT混合组织,较小的EGS (1.6 μm)对解理裂纹的阻碍作用较强;而空冷、炉冷合金钢的组织分别为GBT/LBT、GBT/F,其EGS较大(分别为2.4和2.8 μm),对解理裂纹的阻碍作用较弱。  相似文献   

19.
使用Gleeble 3800热模拟试验机模拟F460钢单道次焊接条件下焊接粗晶热影响区的热循环过程,通过光镜(OM)、扫描电镜(SEM)分析热影响区的显微组织、确定临界事件,通过ABAQUS软件计算临界解理断裂应力σf,进而系统分析不同焊接热输入E下韧脆转变温度变化的内在机理。结果表明:随着E的提高,焊接粗晶热影响区显微组织依次为少量板条马氏体和大量细密的板条贝氏体,板条贝氏体较多的板条/粒状贝氏体,粒状贝氏体较多的板条/粒状贝氏体,粗大的粒状贝氏体。原始奥氏体晶粒、贝氏体团的最大尺寸随着E的提高而变大。在完全解理断裂的冲击断口上,寻找停留在缺口尖端附近的残留裂纹,通过对比残留裂纹长度、原始奥氏体晶粒大小、贝氏体团尺寸,发现不同E下解理断裂的临界事件尺寸都是贝氏体团大小,而临界事件尺寸越小,韧脆转变温度越低。此外,通过有限元模拟缺口尖端的应力分布得到σf,σf越大冲击韧度越好,随着E的提高σf降低,故进一步说明随着E的提高韧脆转变温度Tk上升的内在机理。  相似文献   

20.
利用Formastor-Digital全自动相变仪测定低碳Mn,Ni,Mo,Cr,V,Ti等低合金化钢的静态CCT曲线,结合光学显微镜、透射电镜、显微硬度法分析冷却速率对相变组织演变规律的影响。结果表明:当冷速为0.03℃/s时,相变组织为多边形铁素体(PF)+珠光体(P);冷速为0.06℃/s时,出现退化珠光体(PD);冷速为0.29℃/s时,出现针状铁素体(AF);冷速为1.7℃/s时,组织为粒状贝氏体(GB)+板条贝氏体(LB);冷速为42℃/s时,出现马氏体(M)。提出极低冷速下低碳钢中出现退化珠光体是由于多元低合金元素的耦合交互作用,引起碳活度的变化所致。针状铁素体在晶内形核并长大,对后续相变组织起到分割作用,利于细化组织。低碳钢中局部孪生马氏体的形成归因于淬透性元素聚集对钢局域相变切应力过大所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号