首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dry etching of InGaP, AlInP, and AlGaP in inductively coupled plasmas (ICP) is reported as a function of plasma chemistry (BCl3 or Cl2, with additives of Ar, N2, or H2), source power, radio frequency chuck power, and pressure. Smooth anisotropic pattern transfer at peak etch rates of 1000–2000Å·min?1 is obtained at low DC self-biases (?100V dc) and pressures (2 mTorr). The etch mechanism is characterized by a trade-off between supplying sufficient active chloride species to the surface to produce a strong chemical enhancement of the etch rate, and the efficient removal of the chlorinated etch products before a thick selvedge layer is formed. Cl2 produces smooth surfaces over a wider range of conditions than does BCl3.  相似文献   

2.
Etch rates above 1 μm min−1 are achieved for InGaP and AlInP under electron cyclotron resonance conditions in low pressure (1.5 mTorr) Cl2/Ar discharges. Much lower rates were obtained for AlGaP due to the greater difficulty of the bond breaking that must precede formation and desorption of the etch products. The etched surface morphology and stoichiometry are strong functions of the plasma composition (i.e., the ion/neutral flux ratio). Under optimal conditions, there are no detectable chlorine related residues, in sharp contrast to reactive ion etching with this plasma chemistry.  相似文献   

3.
This study examined the plasma etching characteristics of ZnO thin films etched in BCl3/Ar, BCl3/Cl2/Ar and Cl2/Ar plasmas with a positive photoresist mask. The ZnO etch rates were increased in a limited way by increasing the gas flow ratio of the main etch gases in the BCl3/Ar, BCl3/Cl2/Ar and Cl2/Ar plasmas at a fixed dc self-bias voltage (Vdc). However, the ZnO etch rate was increased more effectively by increasing the Vdc. Optical emission spectroscopy (OES) and X-ray photoelectron spectroscopy (XPS) analyses of the ZnO surfaces etched at various Cl2/(Cl2 + Ar) mixing ratios revealed the formation of the ZnOxCly reaction by-products as a result of the increased etch rate with increasing Cl2 addition, compared with 100% Ar+ sputter etching. This suggests that at Cl2/Ar flow ratios ⩾20%, the ZnO etch process is controlled by an ion-assisted removal mechanism where the etch rate is governed by the ion-bombardment energy under the saturated chlorination conditions.  相似文献   

4.
Plasma chemistries for high density plasma etching of SiC   总被引:1,自引:0,他引:1  
A variety of different plasma chemistries, including SF6, Cl2, ICl, and IBr, have been examined for dry etching of 6H-SiC in high ion density plasma tools (inductively coupled plasma and electron cyclotron resonance). Rates up to 4500?-min−1 were obtained for SF6 plasmas, while much lower rates (≤800?·min−1) were achieved with Cl2, ICl, and IBr. The F2-based chemistries have poor selectivity for SiC over photoresist masks (typically 0.4–0.5), but Ni masks are more robust, and allow etch depths ≥10 μm in the SiC. A micromachining process (sequential etch/deposition steps) designed for Si produces relatively low etch rates (<2,000?-min−1) for SiC.  相似文献   

5.
ICl/Ar and IBr/Ar plasmas were found to be promising candidates for room temperature dry etching processing of the III-V semiconductors GaAs, AlGaAs, GaSb, InP, InGaAs, and InSb. Results showed fast etch rates (0.7 μm/min in ICl/Ar and −0.3 μm/min in IBr/Ar), and at high microwave power, 1000 W, good surface morphology (typical root mean square roughness ∼2 nm), while retaining the near-surface stoichiometry, especially in IBr/Ar plasmas. There was little change of surface smoothness over a wide range of plasma compositions for Gacontaining materials in both ICl/Ar and IBr/Ar plasmas, (e.g. GaAs), while there was a window region with about 25–50% of IBr in IBr/Ar plasmas to maintain good morphology of In-containing semiconductors like InP. Selectivities of 4–10 over mask materials such as SiO2, SiNx, and W were typical in ICl/Ar plasmas.  相似文献   

6.
Dry and wet chemical etching of epitaxial In0, 5Ga0.5P layers grown on GaAs substrates by gas-source molecular beam epitaxy have been investigated. For chlorine-based dry etch mixtures (PCl3/Ar or CC12F2/Ar) the etching rate of InGaP increases linearly with dc self-bias on the sample, whereas CH4/H2-based mixtures produce slower etch rates. Selectivities of ≥500 for etching GaAs over InGaP are obtained under low bias conditions with PCl3/Ar, but the surface morphologies of InGaP are rough. Both CC12F2/Ar and CH4/H2/Ar mixtures produce smooth surface morphologies and good (≥10) selectivities for etching GaAs over InGaP. The wet chemical etching rates of InGaP in H3PO4:HC1:H2O mixtures has been systemically measured as a function of etch formulation and are most rapid (∼1 μn · min−1) for high HCl compositions. The etch rate,R, in a 1:1:1 mixture is thermally activated of the formR ∝ , whereE a = 11.25 kCal · mole−1. This is consistent with the etching being reaction-limited at the surface. This etch mixture is selective for InGaP over GaAs.  相似文献   

7.
The etching mechanism of ZrO2 thin films and etch selectivity over some materials in both BCl3/Ar and BCl3/CHF3/Ar plasmas are investigated using a combination of experimental and modeling methods. To obtain the data on plasma composition and fluxes of active species, global (0‐dimensional) plasma models are developed with Langmuir probe diagnostics data. In BCl3/Ar plasma, changes in gas mixing ratio result in nonlinear changes of both densities and fluxes for Cl, BCl2, and BCl2+. In this work, it is shown that the nonmonotonic behavior of the ZrO2 etch rate as a function of the BCl3/Ar mixing ratio could be related to the ion‐assisted etch mechanism and the ion‐flux‐limited etch regime. The addition of up to 33% CHF3 to the BCl3‐rich BCl3/Ar plasma does not influence the ZrO2 etch rate, but it non‐monotonically changes the etch rates of both Si and SiO2. The last effect can probably be associated with the corresponding behavior of the F atom density.  相似文献   

8.
A parametric study of the etch characteristics of Ga-based (GaAs, GaSb, and AlGaAs) and In-based (InGaP, InP, InAs, and InGaAsP) compound semiconductors in BCl3/Ar planar inductively coupled plasmas (ICPs) was performed. The Ga-based materials etched at significantly higher rates, as expected from the higher volatilities of the As, Ga, and Al trichloride, etch products relative to InCl3. The ratio of BCl3 to Ar proved critical in determining the anisotropy of the etching for GaAs and AlGaAs, through its effect on sidewall passivation. The etched features in In-based materials tended to have sloped sidewalls and much rougher surfaces than for GaAs and AlGaAs. The etched surfaces of both AlGaAs and GaAs have comparable root-mean-square (RMS) roughness and similar stoichiometry to their unetched control samples, while the surfaces of In-based materials are degraded by the etching. The practical effect of the Ar addition is found to be the ability to operate the ICP source over a broader range of pressures and to still maintain acceptable etch rates.  相似文献   

9.
A plasma enhanced, in-situ, dry etching process for the cleaning of stainless steel III-V Metal Organic Chemical Vapor Deposition growth systems was investigated as a function of etchant gas, flow rate, electrode configuration, power density and plasma frequency. The plasma enhanced etching process was investigated using Ar, CH4 (5% in H2), CCl2F2 (Freon 12)/Ar and Cl2/Ar plasmas with flows varying from 5 to 25 seem. The plasma was excited using three electrode configurations, and two radio frequency generators (90–460 KHz and 13.56 MHz), singly and in combination. The plasma power was varied over the range from 200 to 700 Watts (∼0.2W/cm2 – 0.7W/cm2). The etching rates of GaAs, InP, As, and Mo were measured using a weight difference method. The Cl2/Ar plasmas exhibited etching rates typically 5 to 10 times greater than that of CCl2F2 plasmas, which in turn is several times greater than that of the other etchant gases investigated. At 400 W, elemental As etch rates, as high as ∼180μm/hr and ∼20μm/hr were achieved using Cl2 and CCl2F2 plasmas, respectively. InP/GaAs etch rates using Cl2 were ∼30μm/hr and using CCl2F2 were ∼7μm/hr. Plasma characteristics and etch rate measurements are reported. The in-situ process investigated is a safe, cost effective and an efficient method for increasing reactor uptime.  相似文献   

10.
Reactive ion etching (RIE) was performed on GaN and BN thin films using chlorine-based plasmas. The optimum chemistry was found to be BCl3/Cl2/N2/Ar and Cl2/Ar at 30 and 40 mtorr for GaN and BN etching, respectively. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analysis of the GaN and BN etched surfaces show a decrease in the surface nitrogen atomic composition and an increase in chlorine impurity incorporation with increasing self-dc bias. A photo-assisted RIE (PA-PIE) process using an IR filtered Xe lamp beam was then used and resulted in improved etch rates and surface composition. Optical emission spectroscopy (OES) measurements have also shown photoenhancement of the etch process.  相似文献   

11.
IBr/Ar plasmas were found to be promising candidates for room temperature dry etch processing of the III-V semiconductors GaAs, AlGaAs, GaSb, InP, InGaAs, and InSb. Results showed fast etch rates (~3,000Å/min) at high microwave power (1000W) and good surface morphology (typical root mean square roughness ~2 nm), while retaining the near-surface stoichiometry. There was little variation of surface smoothness over a wide range of plasma compositions for Gacontaining materials. By contrast, there was a plasma composition window of about 25–50% of IBr in IBr/Ar plasmas for maintaining good morphology of Incontaining semiconductors like InP. Etch rates of the semiconductors generally increased with microwave power (400-1000 W) and rf power (50-250 W), whereas there was little dependence of the rates on the increasing percentage of IBr in the IBr/Ar plasma composition above 30% IBr for In-based, and 50% IBr for Ga-based materials. Those results show the etch rates over 30% of IBr in IBr/ Ar are desorption-limited. Photoresist masks do not hold up well to the IBr under ECR conditions, resulting in poor profile control, whereas SiNx offers much better etch resistance.  相似文献   

12.
The Mo-based metal inserted poly-Si stack (MIPS) structure is an appropriate choice for metal gate and high-k integration in sub-45 nm gate-first CMOS device. A novel metal nitride layer of TaN or AlN with high thermal stability has been introduced between Mo and poly-Si as a barrier material to avoid any reaction of Mo during poly-Si deposition. After Mo-based MIPS structure is successfully prepared, dry etching of poly-Si/TaN/Mo gate stack is studied in detail. The three-step plasma etching using the Cl2/HBr chemistry without soft landing step has been developed to attain a vertical poly-Si profile and a reliable etch-stop on the TaN/Mo metal gate. For the etching of TaN/Mo gate stack, two methods using BCl3/Cl2/O2/Ar plasma are presented to get both vertical profile and smooth etched surface, and they are critical to get high selectivity to high-k dielectric and Si substrate. In addition, adding a little SF6 to the BCl3/O2/Ar plasma under the optimized conditions is also found to be effective to smoothly etch the TaN/Mo gate stack with vertical profile.  相似文献   

13.
The etching mechanism of ZrO2 thin films in BCl3/Ar plasma was investigated using a combination of experimental and modeling methods. It was found that an increase in the Ar mixing ratio causes the non-monotonic behavior of the ZrO2 etch rate which reaches a maximum of 41.4 nm/min at about 30-35% Ar. Langmuir probe measurements and plasma modeling indicated the noticeable influence of a BCl3/Ar mixture composition on plasma parameters and active species kinetics that results in non-linear changes of both densities and fluxes for Cl, BCl2 and . From the model-based analysis of surface kinetics, it was shown that the non-monotonic behavior of the ZrO2 etch rate can be associated with the concurrence of chemical and physical pathways in ion-assisted chemical reaction.  相似文献   

14.
Dry etched InAlN and GaN surfaces have been characterized by current-voltage measurement, Auger electron spectroscopy, and atomic force microscopy. Electron cyclotron resonance discharges of BCl3. BCl3/Ar, BCl3/N2, or BCl3/N2 plus wet chemical etch all produce nitrogen surfaces that promote leakage current in rectifying gate contacts, with the BCl3/N2 plus wet chemical etch producing the least disruption on the surface properties. The conductivity of the immediate InAlN or GaN surface can be increased by preferential loss of N during BCl3 plasma etching, leading to poor rectifying contact characteristics when the gate metal is deposited on this etched surface. Careful control of plasma chemistry, ion energy, and stoichiometry of the etched surface are necessary for acceptable pinch-off characteristics. Hydrogen passivation during the etch was also studied.  相似文献   

15.
Dry etching of multilayer magnetic thin film materials is necessary for the development of sensitive magnetic field sensors and memory devices. The use of high ion density electron cyclotron resonance (ECR) plasma etching for NiFe, NiFeCo, TaN, and CrSi in SF6/Ar, CH4/H2/Ar, and Cl2/Ar plasmas was investigated as a function of microwave source power, rf chuck power, and process pressure. All of the plasma chemistries are found to provide some enhancement in etch rates relative to pure Ar ion milling, while Cl2/Ar provided the fastest etch rate for all four materials. Typical etch rates of 3000Å/min were found at high microwave source power. Etch rates of these metals were found to increase with rf chuck power and microwave source power, but to decrease with increasing pressure in SF6/Ar, CH4/H2/Ar, and Cl2/Ar. A significant issue with Cl2/Ar is that it produces significant metal-chlorine surface residues that lead to post-etch corrosion problems in NiFe and NiFeCo. However, the concentration of these residues may be significantly reduced by in-situ H2 or O2 plasma cleaning prior to removal of the samples from the etch reactor.  相似文献   

16.
The etching mechanism of (Bi4−xLax)Ti3O12 (BLT) thin films in Ar/Cl2 inductively coupled plasma (ICP) and plasma-induced damages at the etched surfaces were investigated as a function of gas-mixing ratios. The maximum etch rate of BLT thin films was 50.8 nm/min of 80% Ar/20% Cl2. From various experimental data, amorphous phases on the etched surface existed on both chemically and physically etched films, but the amorphous phase was thicker after the 80% Ar/20% Cl2 process. Moreover, crystalline “breaking” appeared during the etching in Cl2-containing plasma. Also the remnant polarization and fatigue resistances decreased more for the 80% Ar/20% Cl2 etch than for pure Ar plasma etch.  相似文献   

17.
Two different plasma chemistries for etching ZnO were examined. Both Cl2/Ar and CH4/H2/Ar produced etch rates which increased linearly with rf power, reaching values of 1200 Å/min for Cl2/Ar and 3000 Å/min for CH4/H2/Ar. The evolution of surface morphology, surface composition, and PL intensity as a function of energy during etching were monitored. The effect of H in ZnO was studied using direct implantation at doses of 1015–1016 cm−2, followed by annealing at 500–700 °C. The hydrogen shows significant outdiffusion at 500 °C and is below the detection limits of SIMS after 700 °C anneals. SEM of the etched features showed anisotropic sidewalls, indicative of an ion-driven etch mechanism.  相似文献   

18.
ICP etching of SiC   总被引:1,自引:0,他引:1  
A number of different plasma chemistries, including NF3/O2, SF6/O2, SF6/Ar, ICl, IBr, Cl2/Ar, BCl3/Ar and CH4/H2/Ar, have been investigated for dry etching of 6H and 3C–SiC in an inductively coupled plasma tool. Rates above 2000 Å cm−1 are found with fluorine-based chemistries at high ion currents. Surprisingly, Cl2-based etching does not provide high rates, even though the potential etch products (SiCl4 and CCl4) are volatile. Photoresist masks have poor selectivity over SiC in F2-based plasmas under normal conditions, and ITO or Ni is preferred.  相似文献   

19.
By exploiting the relatively high volatility of In etch products in CH4/H2 discharges, we were able to obtain a maximum selectivity for InGaP over GaAs of ∼20 at low ion energies and fluxes. Three different inert gas additives to CH4/H2 were examined, with Ar producing higher selectivities than He or Xe. This process is attractive for selective removal of the InGaP emitter in the fabrication of heterojunction bipolar transistors.  相似文献   

20.
In this work, we investigated etching characteristics of BST thin films and higher selectivity of BST over Si using inductive coupled O2/Cl2/Ar plasma (ICP) system. The maximum etch rate of BST thin films and selectivity of BST over Si were 61.5 nm/min at a O2 addition of 1 sccm, 9.52 at a O2 addition of 4 sccm into the Cl2(30%)/Ar(70%) plasma, respectively. Plasma diagnostics was performed by Langmuir probe (LP), optical emission spectroscopy (OES) and quadrupole mass spectrometry (QMS). These results confirm that the increased etch rates at O2 addition of 1 sccm is the result of the enhanced chemical reaction between BST and Cl radicals and an ion bombardment effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号