首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
琥珀酸(Succinic acid)被认为是白色生物技术生产的最具潜力的大宗化学品之一,在工业上具有广泛的应用。微生物发酵生产琥珀酸具有环境友好和可持续发展等优点,展现出良好的发展前景,但是存在得率低、副产物积累、生产强度低等问题。为了实现琥珀酸的高效生产,在3.6 L发酵罐中对E. coli FMME-N-26生产琥珀酸发酵条件和补料策略进行了优化,建立了好氧-厌氧两阶段发酵工艺,最终确定发酵策略为:有氧发酵8 h后转为厌氧发酵,MgCO3为pH中和剂,发酵72 h补加抗渗透压保护剂2 mmol/L甜菜碱,厌氧阶段控制葡萄糖浓度为1~5 g/L。优化后发酵72 h,琥珀酸的产量和厌氧阶段得率分别达到119.2 g/L和1.08 g/g葡萄糖(理论得率97%),分别比优化前提高了46.4%和4.8%,副产物乙酸和乳酸仅积累2.37和0.94 g/L,分别比优化前降低了37.1%和49.2%。在1000 L发酵罐中实现中试放大生产,E. coli FMME-N-26生产琥珀酸的产量、得率和生产强度在国内外属于领先水平,为琥珀酸工业化生产奠定了坚实的基础,同时也为其他高价值化学品的生产提供了借鉴。  相似文献   

2.
为考察葡萄糖和铜离子盐协同补料发酵对球头三型孢菌产赤藓糖醇的影响,在5L发酵罐中先采用不同浓度的葡萄糖进行分批发酵,然后采用优化的葡萄糖浓度并添加CuSO4·5H2O进行发酵研究。结果表明,初始葡萄糖浓度为300g/L的赤藓糖醇产量最大为44.52g/L,其体积生产速率为0.371g/(L·h)、转化率为0.167g/g。在此浓度葡萄糖的基础上添加30mg/L的CuSO4·5H2O后,赤藓糖醇产量达到49.62g/L,提高了11.5%。进一步控制总糖浓度为300g/L,且初始浓度为200g/L,分别进行单独补糖和协同补糖与铜离子的补料发酵,结果赤藓糖醇产量分别为47.25g/L和55.31g/L,比初始300g/L的葡萄糖分批发酵分别提高了6.1%和24.2%。特别地,协同补糖与CuSO4·5H2O后,赤藓糖还原酶(erythrose reductase,ER)的活性在84h达到最大,为0.152U/mg,比单独补糖时提高了18.8%;通过铜离子盐和葡萄糖的协同补料发酵可显著提高赤藓糖醇的产量,最终使赤藓糖醇产率达到0.461g/(L·h)。  相似文献   

3.
产朊假丝酵母流加发酵法生产谷胱甘肽   总被引:8,自引:0,他引:8  
研究了产朊假丝酵母在不同葡萄糖浓度下的谷胱甘肽(GSH)分批发酵过程,在此基础上进一步考察了重复补料、恒速流加和指数流加等不同培养方式对GSH发酵生产的影响. 结果发现,这几种培养方式都可以实现酵母细胞和GSH的高产. 综合比较,无论是从细胞还是从GSH的产量、得率和生产强度的角度来看,指数流加都是较为理想的选择. 经过48 h的指数流加培养,细胞干重达到40.9 g/L, GSH产量和胞内GSH含量分别达到857.2 mg/L和2.25%.  相似文献   

4.
通过对补料时间、方式和补料液浓度变化(特别是补加氮源)对D-核糖发酵过程影响,确定了D-核糖发酵的补料工艺。按此工艺条件,发酵的时间为72 h,D-核糖的产量93.83 g/L,剩余葡萄糖浓度为4 g/L,转化率为0.284 3 g/g,生产强度为1.303 g/(L.h)。与不补料相比,D-核糖产量提高了95.9%。  相似文献   

5.
转氨酶是苯丙酮酸酶法制备L-苯丙氨酸的关键酶源,为提高转氨酶的发酵产酶密度,文章采用补料分批培养方式对大肠杆菌A5发酵产酶进行了研究。优化的补料培养工艺为:初始葡萄糖质量浓度5 g/L,初始氮源体积分数为玉米浆5 mL/L、蛋白胨质量浓度1.5 g/L,控制发酵过程pH值7.5,当葡萄糖质量浓度下降为2 g/L,开始每隔2 h补加质量浓度为120 g/L的葡萄糖溶液,从8 h起每隔2 h补加20 mL/L玉米浆+6 g/L蛋白胨及0.6 g/L的4种氨基酸溶液(L-甲硫氨酸、L-缬氨酸、L-异亮氨酸和L-谷氨酸)。在此条件下发酵培养24 h,菌体干质量浓度达10.5 g/L,比优化前产酶量提高了126%。  相似文献   

6.
对产琥珀酸放线杆菌(Actinobacillus succinogenes)GXAS137发酵木糖母液产丁二酸的条件进行优化,探索利用废弃木糖母液合成高附加值丁二酸的可行性。首先通过Plackett-Burman实验设计确定影响丁二酸发酵的显著因子,然后采用最陡爬坡实验逼近各显著因子的最优区域,最后通过Box-Behnken实验设计确定各因子的最优水平。影响木糖母液发酵产丁二酸的显著因子及最优浓度分别为:木糖母液64.75g/L,玉米浆15.71g/L,碱式碳酸镁46.39g/L。在最优发酵培养条件下,丁二酸产量达到38.01g/L,比优化前提高了20.7%,与模型预测值(38.41g/L)基本一致。进一步利用2L发酵罐进行了放大试验,发酵72h丁二酸产量最高可达48.99g/L,较厌氧瓶发酵提高了28.9%,丁二酸得率为0.80g/g总糖。结果表明,采用低价的木糖母液作为底物,可为未来低成本、高效产业化生产丁二酸奠定坚实的基础。  相似文献   

7.
以根癌土壤杆菌(Agrobacterium tumefaciens Q14)为生产菌株,在15 L发酵罐内对补料分批发酵生产辅酶Q10的工艺进行优化.通过逐步添加限制性营养物质,考察其对发酵的影响,获得了较优的补料分批发酵工艺,即流加葡萄糖和KH2PO4溶液,将葡萄糖和磷浓度分别控制在5~15 g/L和50~120 m...  相似文献   

8.
E.coli M15 (pQTPL)高效发酵生产酪氨酸酚裂解酶的控制策略   总被引:1,自引:0,他引:1  
在摇瓶和4 L发酵罐上研究了营养和环境条件对重组菌E. coli M15 (pQTPL)分批发酵生产酪氨酸酚裂解酶(TPL)的影响. 在培养基中添加20 g/L葡萄糖和1.0 g/L玉米浆使TPL酶活提高到63.1 U/g(干重). 在此基础上,维持发酵液中溶氧水平为30%,可使菌体浓度在8 h达到4.78 g/L,酶活为54.6 U/g,比对照组(不控制溶氧)分别提高了21%和31.6%. 采用溶氧反馈调节-限制性补料策略,可使菌体浓度提高到31.5 g/L. 采用两阶段温度和pH控制策略,在发酵前8 h控制pH 7.0、温度37℃,8 h 至发酵结束之间控制pH为8.0、温度为30℃,可使重组菌的TPL酶活达到154.4 U/g,并使TPL在细胞中过量表达,实现了高菌体浓度和高TPL酶活的统一.  相似文献   

9.
优化了用不透明红球菌FMME1-41所产谷氨酸氧化酶(LGOX)转化L-谷氨酸产α-酮戊二酸(α-KG)的工艺条件.结果表明,最佳发酵培养基为酵母粉6 g/L,大豆蛋白胨2 g/L,(NH_4)_2SO_4 0.8 g/L,葡萄糖25 g/L,KH_2PO_4 3 g/L,MgSO_4 0.6 g/L,MnSO_4 0.3g/L,L-谷氨酸2.5 g/L,在其中发酵30 h,LGOX酶活达6.12 U/mL;在7.5 L发酵罐中优化发酵放大和补料策略,发酵40 h后LGOX酶活达21.5 U/mL;在2 L发酵罐中转化L-谷氨酸生产α-KG,产量达92.0 g/L,摩尔转化率为92.6%,生产强度为9.2 g/(L·h).  相似文献   

10.
自絮凝颗粒酵母发酵菊芋汁生产乙醇   总被引:3,自引:0,他引:3  
分别采用分批和连续发酵方式,对自絮凝颗粒酵母Saccharomyces cerevisiae flo发酵菊芋汁生产乙醇的条件进行了优化. 与先酶解菊芋汁后再用自絮凝酵母发酵的分步糖化发酵相比,分批发酵过程中同时加入菊粉酶和自絮凝酵母的同步糖化发酵乙醇得率高,发酵时间短. 当菊芋汁总糖浓度分别为105和179 g/L时,同步糖化发酵的最高乙醇浓度达50和82.5 g/L,比分步糖化发酵高6.4%和13.8%. 在连续发酵过程中应用同步糖化发酵法,当稀释率为0.02 h-1时,乙醇浓度约为90 g/L时达到稳定状态,乙醇得率达到理论值的90%,生产强度达2.12 g/(L×h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号