首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We experimentally demonstrated the generation of transform-limit Gaussian ultrashort pulses as short as 70 fs from a dispersion-managed mode-locked erbium-doped fibre (EDF) laser. The output spectrum is close to the Gaussian profile with a full-width half-maximum (FWHM) output of 49?nm, and the measured autocorrelation trace exhibits the Gaussian profile. The shortest pulse duration of 70 fs was observed after external recompression. The time-band product is 0.44, showing the best transform limit pulse.  相似文献   

2.
Wang W  Liu Y  Xi P  Ren Q 《Applied optics》2010,49(35):6703-6709
Short pulses can induce high nonlinear excitation, and thus they should be favorable for use in multiphoton microscopy. However, the large spectral dispersion can easily destroy the advantages of the ultrashort pulse if there is no compensation. The group delay dispersion (GDD), third-order dispersion, and their effects on the intensity and bandwidth of second-harmonic generation (SHG) signal were analyzed. We found that the prism pair used for compensating the GDD of the two-photon microscope actually introduces significant negative high-order dispersion (HOD), which dramatically narrowed down the two-photon absorption probability for ultrashort pulses. We also investigated the SHG signal after GDD and HOD compensation for different pulse durations. Without HOD compensation, the SHG efficiency dropped significantly for a pulse duration below 20 fs. We experimentally compared the SHG and two-photon excited fluorescence (TPEF) signal intensity for 11 fs versus 50 fs pulses, a pulse duration close to that commonly used in conventional multiphoton microscopy. The result suggested that after adaptive phase compensation, the 11fs pulse can yield a 3.2- to 6.0-fold TPEF intensity and a 5.1-fold SHG intensity, compared to 50 fs pulses.  相似文献   

3.
We analyze the spatiotemporal intensity of Gaussian temporal envelope pulses with initial durations of 200 fs and a carrier wavelength of 810 nm at the paraxial focal plane of an achromatic doublet lens for a well-collimated incoming pulse beam by using the Seidel aberration theory for thin lenses with the stop at the lens. We analyze the effect of these aberrations in the focusing of ultrashort pulses for Gaussian illumination and present experimental results for 200 fs pulses focused by a near-IR achromatic doublet.  相似文献   

4.
Results are presented on experimental and theoretical work performed to compare diffraction phenomena for ultrashort 10 fs pulses and continuous-wave propagation modes illuminating different-sized pinholes and slits. Results demonstrate that 10 fs pulses do not produce high-frequency diffraction like that produced with continuous-wave illumination. The diffraction through a 1 mm pinhole of temporally stretched pulses obtained by using fused silica plates whose frequency spectrum remains the same is compared with those of 10 fs pulses. The overall diffraction intensity profiles are, however, nearly identical in this case. The simulations of diffraction patterns for 100 fs, 10 fs, and 1 fs incident pulse were compared theoretically for different aperture sizes and frequencies. Calculations indicate that the lack of high-frequency diffraction for the mode-locked case is due to the broadband nature of the ultrashort laser pulses; i.e., the distribution of the frequency contained in the pulse ends up washing out when objects are illuminated with pulses of broad frequency content. The results of this work have important application in biomedical imaging and remote imaging applications, to name only a few.  相似文献   

5.
We have studied the phenomenon of breakdown in liquids under the action of ultrashort (160 fs) laser pulses focused in the vicinity of a flat or curved liquid-gas interface. It is established that a slightly divergent jet containing micron-sized bubbles is formed in the liquid, which originates from the laser-induced breakdown zone and propagates inward the liquid along the normal drawn to the interface from the point of laser beam focusing. The jet length depends on the distance from this focal point to the interface, as well as on the energy, and the repetition rate of laser pulses and can reach several centimeters.  相似文献   

6.
4f pulse shapers have been widely used to temporally manipulate femtosecond optical pulses by spectral filtering. When the temporal waveform is manipulated with a spatial light modulator consisting of segmented pixels, the spatial profile of the output beam also varies because of diffraction at the pixel array, which is known as a spatiotemporal coupling effect. This effect produces a complicated spatio-temporal profile near the focus of the ultrashort pulses, which may affect the interpretation of experimental results obtained with shaped ultrashort pulses. We investigate the spatial intensity distribution at the focus of temporally shaped pulses through ablation experiments. The three-dimensional space-time beam profile is also numerically calculated.  相似文献   

7.
Zhang S  Ren Y  Lüpke G 《Applied optics》2003,42(4):715-718
We calculated the temporal and spatial characteristics of an ultrashort laser pulse propagating through a diffractive beam-shaping system that converts a Gaussian beam into a beam with a uniform irradiance profile that was originally designed for continuous waves [Proc. SPIE 2863, 237(1996)]. The pulse front is found to be considerably curved for a 10-fs pulse, resulting in a temporal broadening of the pulse that increases with increasing radius. The spatial intensity distribution deviates significantly from a top-hat profile, whereas the fluence shows a homogeneous radial distribution.  相似文献   

8.
We present the design, implementation, and testing of a novel picosecond optical parametric preamplifier system to generate high-energy seed pulses for the Vulcan laser facility. The preamplifier amplifies 100?fs pulses stretched to 3?ps pulses from 10?pJ to 70 μJ in a single stage of amplification before the pulses are further amplified in the Vulcan high-power Nd:glass laser facility to the petawatt power level. This increased seed energy has led to an improvement of the nanosecond amplified spontaneous emission contrast intensity to 10(-10) of the main pulse, without degrading the output of the laser system.  相似文献   

9.
Heisler IA  Correia RR  Cunha SL 《Applied optics》2005,44(16):3377-3382
The measurement and characterization of ultrashort laser pulses remains an arduous task. The most commonly used pulse-measurement method is known as frequency-resolved optical gating (FROG), and another version with great experimental simplification and low-priced setup is known as grating-eliminated no-nonsense observation of ultrafast incident laser light E fields (GRENOUILLE). Nevertheless, there is interest in elaborating other, more accessible or simpler and cheaper, setups with equal or better assets. We explored modification of the GRENOUILLE method in which we replaced the original Fresnel biprism with a beam splitter and two mirrors and used a cheap webcam to measure the pulse traces. We have evaluated our system, and we propose a method to correct border effects caused by the beam intensity's profile based on the characterization of three pulse classes: Fourier-transform limited, double, and chirped. We compare the recovered electric field with further spectral and second-order correlation data of the corresponding pulses.  相似文献   

10.
Bessel pulse beams and focus wave modes   总被引:2,自引:0,他引:2  
Free-space propagation of ultrashort pulses is investigated. Space-time couplings are reduced for a particular form of beams that is termed a pulse beam, or a type 3 pulsed beam. General conditions for the formation of pulse beams in the paraxial approximation are presented. The free-space propagation of spatially localized ultrashort laser pulses is investigated. This treatment is based on a particular pulsed form of the well-known Bessel beam, which is termed a Bessel pulse beam. The connections with focus wave modes and X waves are discussed.  相似文献   

11.
The diffraction of ultrashort pulsed Gaussian beams from a circular aperture is studied by means of Fresnel diffraction integral and Fourier transform method. A uniform analytical expression is derived for temporal pulse form of ultrashort pulsed Gaussian beams in two cases, i.e. with constant beam waist and with constant diffraction length. It is shown that the on-axis pulse can be formulated as a superposition of an unapertured pulse and an aperture-induced pulse. The superposition of these two pulses leads to an enhanced pulse intensity for small truncation parameters at certain distances in the near field. Our results may find applications in high-intensity laser waveform control.  相似文献   

12.
The interaction of sub-picosecond laser pulses with magnetically ordered materials has developed into an extremely exciting research topic in modern magnetism. From the discovery of sub-picosecond demagnetization over a decade ago to the recent demonstration of magnetization reversal by a single 40?fs laser pulse, the manipulation of spins by ultrashort laser pulses has become a fundamentally challenging topic with a potentially high impact for future spintronics, data storage and manipulation, and quantum computation. We have recently demonstrated that one can generate ultrashort and very strong (teslas) magnetic field pulses via the so-called inverse Faraday effect. Such optically induced magnetic field pulses provide unprecedented means for the generation, manipulation and coherent control of spins on very short time scales. The basic ideas behind these so-called opto-magnetic effects will be discussed and illustrated with recent results, demonstrating the various possibilities of this new field of femto-magnetism.  相似文献   

13.
High-repetition-rate (80-MHz) femtosecond infrared pulses are generated by difference frequency mixing (DFM) a femtosecond Ti:sapphire laser with a phase-locked synchronized cw mode-locked Nd:YAG picosecond laser. This DFM scheme is of particular interest for generating ultrashort near-IR pulses (~10 fs) because group velocity mismatch with a pump pulse can be ignored. The simplicity and the broad wavelength tunability (from the near IR to the mid-IR) of this scheme is demonstrated. Short (125-fs FWHM) optical pulses in the near IR around 1.5 mum are obtained with noncritical type-I phase-matched LiB(3) O(5). We also used a similar scheme to generate mid-infrared pulses at 3.0 mum with type-II phase-matched KTiOPO(4).  相似文献   

14.
Experiments were performed to examine the feasibility of mass spectrometry (MS) depth profiling of animal tissue by ~75 fs, 800 nm laser pulses to expose underlying layers of tissue for subsequent MS analysis. Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) was used to analyze phospholipids and proteins from both intact bovine eye lens tissue and tissue ablated by ultrashort laser pulses. Laser desorption postionization mass spectrometry (LDPI-MS) with 10.5 eV single photon ionization was also used to analyze cholesterol and other small molecules in the tissue before and after laser ablation. Scanning electron microscopy was applied to examine the ablation patterns in the tissue and estimate the depth of the ablation craters. Ultrashort pulse laser ablation was found to be able to remove a layer of several tens of micrometers from the surface of eye lens tissue while leaving the underlying tissue relatively undamaged for subsequent MS analysis. MS analysis of cholesterol, phospholipids, peptides, and various unidentified species did not reveal any chemical damage caused by ultrashort pulse laser ablation for analytes smaller than ~6 kDa. However, a drop in intensity of larger protein ions was detected by MALDI-MS following laser ablation. An additional advantage was that ablated tissue displayed up to an order of magnitude higher signal intensities than intact tissue when subsequently analyzed by MS. These results support the use of ultrashort pulse laser ablation in combination with MS analysis to permit depth profiling of animal tissue.  相似文献   

15.
By numerically solving the time-dependent Schrödinger equation for helium gas in a special two-color laser field, which is synthesized by a long (9?fs) driving pulse and a short (6?fs) controlling pulse, we discuss the influence of the carrier-envelope phase, frequency, and the intensity of the controlling pulse on the generation of harmonic spectra and isolated attosecond pluses. In the cutoff region, two or three plateaus can be controlled by optimizing these laser parameters, and an ultrabroad supercontinuum harmonic spectrum with a bandwidth of 800?eV can be produced, which can support an ultrashort isolated 4.5 as pulse generation by Fourier transformation. Furthermore, using classical ionizing and returning energy maps, time–frequency analyses are presented to explain the underlying physical mechanisms.  相似文献   

16.
Dainesi P  Ihlemann J  Simon P 《Applied optics》1997,36(27):7080-7085
We present an optical arrangement for spatial homogenization of an UV beam carrying a short pulse (500 fs) to be used for material ablation. Conventional cylindrical fly's eye lens homogenizers (CFELH's) introduce unwanted interference effects into a beam caused by the high spatial coherence of short pulses. To prevent the disturbing effect of these intensity modulations, one can couple a low-loss distributed delay device to the CFELH. With the new design an intensity nonuniformity of <+/-5% rms can be obtained. High-resolution images of the beam profile show complete removal of the interference modulation. The pulse duration after homogenization is 12.5 ps. We performed preliminary ablation experiments in polyimide samples both by direct irradiation and by mask imaging. Uniformity and edge quality of the results are more than satisfactory, and the undesirable structure caused by interference is completely removed.  相似文献   

17.
We analyze the spatiotemporal intensity of pulses with durations of 20 fs and shorter and a carrier wavelength of 810 nm at the paraxial focal plane of an achromatic doublet lens. The incident pulse is well-collimated, and we use the Seidel aberration theory for thin lenses to evaluate the phase change due to the aberrations of the lens. In a set of cemented thin lenses with the stop at the lens, there is only spherical aberration, coma, astigmatism and field curvature, whereas the distortion aberration in the phase front is zero. We analyze the effect of these aberrations in the focusing of ultrashort pulses for homogenous illumination. We will show that the temporal spreading introduced by these aberrations in pulses shorter than 20 fs at 810 nm is very small but the spatial spreading is not, which reduces the intensity of the pulse considerably.  相似文献   

18.
A uniform formulation for the self-imaging of gratings with any kind of partially coherent illumination is developed in terms of the cross mutual spectral density of the partial coherence theory. The formulation includes the time diffractive intensity distribution and the averaged diffractive intensity distribution at self-imaging distances and can be applied to both continuous and temporal illuminations with any kind of spectra. It is found that the averaged intensity distribution is related only to the intensity spectrum of illumination. The continuous polychromatic illumination and the ultrashort laser pulses with or without frequency chirp are then studied by a numerical stimulation. It is shown that the ultrashort laser pulse and the continuous polychromatic illuminations have similar averaged self-image distributions. Thus the Talbot effect may help in the study of the temporal and spectral characteristics of ultrashort laser pulses. An experiment with an LED is given, as well.  相似文献   

19.
A second-order autocorrelator for single-shot measurement of ultrashort laser pulse durations has been set up. It is based on recording the spatial profile of non-collinear phase-matched second harmonic generation in a KDP crystal using a CCD camera-framegrabber combination. Performance of the system is described from measurement of 250 femtosecond transform-limited laser pulses from a passively mode-locked, diode pumped Nd:glass laser. It can also be used for measurement of picosecond laser pulses in the multi-shot scanning mode.  相似文献   

20.
We present the scheme of a beam separator for ultrashort high-order harmonic radiation below 10 nm. The system consists of a collimating mirror and two plane grazing-incidence gratings in compensated configuration. The first grating acts as the beam separator: it diffracts the extreme ultraviolet (XUV) light into the first order while reflecting the fundamental laser beam into the zero order. The diffracted light goes to a second grating that compensates both for the spectral dispersion and for the temporal broadening of the XUV ultrashort pulse caused by the diffraction at the first grating. The system can be designed for any wavelength in the 3-40 nm region. Since the gratings are operated at extreme grazing incidence, the area of the optical surface illuminated by the fundamental laser pulse is large, and therefore there is no risk of damage of the optical surfaces. The effects on the phase of the ultrashort pulse for narrowband applications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号