首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
This paper demonstrates the application of factor screening to multivariable crashworthiness design of the vehicle body subjected to the side impact loading. Crashworthiness, influenced unequally by disparate factors such as the structural dimensions and material parameters, represents a natural benchmark criterion to judge the passive safety quality of the automobile design. In order to single out the active factors which pose a profound influence on the crashworthiness of vehicle bodies subjected to the side impact loading, the unreplicated saturated factorial design is adopted to tackle the obstacle from the factor screening due to its huge benefits in the efficiency and accuracy. In this paper, two different kinds of vehicles are analyzed by the unreplicated saturated factorial design for multivariable crashworthiness and the optimization results enhance the crashworthiness of vehicle. This method overcomes the limitations of design variables selection which depends on experience, and solves the in-efficiency problems caused by the direct optimization design without the selection of variables. It will shorten the design cycles, decrease the development costs and will have a certain reference value for the improvement of the vehicle’s crashworthiness performance.  相似文献   

2.
With the rapid development of the vehicle industry, crashworthiness has become a crucial aspect in vehicle body design. In fact, crashworthiness is a multivariable optimization design problem for a vehicle body, regardless of structure or material. However, when crashworthiness involves a large number of design variables, including both material and structure variables, it is more difficult to deal with. In this paper, an integrated design technique for materials and structures of vehicle body under crash safety consideration is suggested. First, a finite element model of the vehicle body is established according to relevant vehicle safety standards. Then, the material parameters of the vehicle body are set as analytical factors for factor screening. Next, significant factors are obtained using a three-level saturated design integrated with multi-index comprehensive balance analysis and the MaxUr (3) method, with an improved evaluation method. These screened material parameters along with the corresponding continuous variables of the structure, are considered as the design variables of the integrated design of the vehicle body. Both the weight and the crashworthiness properties are set as the design objectives. Optimal Latin hypercube sampling and radius basis functions are utilized to construct highly accurate surrogate models. Furthermore, the non-dominated sorting genetic algorithm II is implemented to seek the optimal solutions. Finally, two cases considering the roof module and the frontal module of a vehicle body are analyzed to verify the proposed method.  相似文献   

3.
Design optimization is presented for the crashworthiness improvement of an automotive body structure. The optimization objective was to improve automotive crashworthiness conditions according to the defined criterion (occupant chest deceleration) during a full frontal impact. The controllable factors used in this study consisted of six internal parts of the vehicle’s frontal structure in a condition that their thickness was the “design parameter”. First using the Taguchi method, this study analyzed the optimum conditions in discontinuous design area and impact factors and their optimal levels of design objectives were obtained by analyzing the experimental results. Next to model a precise understanding of the explicit mathematical input–output relationship, fuzzy logic is utilized which make use of full factorial design set of experimental test cases resulted from Taguchi predicting formulations. Interestingly, the optimum conditions for automotive crashworthiness occurred with 2.72 % improvement in the defined crashworthiness criterion in comparison with the baseline design while selected structural parts experienced mass reduction by 8.23 %.  相似文献   

4.
Simulation of systems involve a number of factors or variables which act and interact to produce an output. When these factors are small in number the experimenter can control them effectively to obtain an optimal output, but when the number of factors increases then efforts to control all the factors effectively also increases and leads to wastage of resources and away from optimality. Very often in a system where a number of factors are involved only a few of them actively involve in producing the output. Therefore it is the interest of the researcher to detect those active factors, and experimental design is frequently applied. The detecting process is called as screening. Screening can done by factorial designs such as 2K (full factorial design) or by 2k-p (fractional factorial design). Even by the fractional factorial method, one might still need to run too many experiments. It is desired to accomplish the screening process in as few number of runs as possible using random balance design, super saturated design or group-screening. Of these methods group-screening has been identified by researchers such as Mauro, Smith, etc. as the most efficient tool. In this research we study the usage of group-screening method as a simulation analysis tool while improving the method from earlier researches. Performance and results are studied and provided in form of response surface figures and tables.  相似文献   

5.
In automotive industry, structural optimization for crashworthiness criteria is of special importance. Due to the high nonlinearities, however, there exists substantial difficulty to obtain accurate continuum or discrete sensitivities. For this reason, metamodel or surrogate model methods have been extensively employed in vehicle design with industry interest. This paper presents a multiobjective optimization procedure for the vehicle design, where the weight, acceleration characteristics and toe-board intrusion are considered as the design objectives. The response surface method with linear and quadratic basis functions is employed to formulate these objectives, in which optimal Latin hypercube sampling and stepwise regression techniques are implemented. In this study, a nondominated sorting genetic algorithm is employed to search for Pareto solution to a full-scale vehicle design problem that undergoes both the full frontal and 40% offset-frontal crashes. The results demonstrate the capability and potential of this procedure in solving the crashworthiness design of vehicles.  相似文献   

6.
With the advent of powerful computers, vehicle safety issues have recently been addressed using computational methods of vehicle crashworthiness, resulting in reductions in cost and time for new vehicle development. Vehicle design demands multidisciplinary optimization coupled with a computational crashworthiness analysis. However, simulation-based optimization generates deterministic optimum designs, which are frequently pushed to the limits of design constraint boundaries, leaving little or no room for tolerances (uncertainty) in modeling, simulation uncertainties, and/or manufacturing imperfections. Consequently, deterministic optimum designs that are obtained without consideration of uncertainty may result in unreliable designs, indicating the need for Reliability-Based Design Optimization (RBDO).Recent development in RBDO allows evaluations of probabilistic constraints in two alternative ways: using the Reliability Index Approach (RIA) and the Performance Measure Approach (PMA). The PMA using the Hybrid Mean Value (HMV) method is shown to be robust and efficient in the RBDO process, whereas RIA yields instability for some problems. This paper presents an application of PMA and HMV for RBDO for the crashworthiness of a large-scale vehicle side impact. It is shown that the proposed RBDO approach is very effective in obtaining a reliability-based optimum design.  相似文献   

7.
In automotive industry, structural optimization for crashworthiness criteria is of special importance in the early design stage. To reduce the vehicle design cycle, metamodeling techniques have become so widespread... In this study, a time-based metamodeling technique is proposed for the vehicle design. The characteristics of the proposed method are the construction of a time-based objective function and establishment of a metamodel by support vector regression (SVR). Compared with other popular metamodel-based optimization methods, the design space of the proposed method is expanded to time domain. Thus, more information and features can be extracted in the expanded time domain. To validate the performance of the time-based metamodeling technique, cylinder impacting and full vehicle frontal collision are optimized by the proposed method. The results demonstrate that the proposed method has potential capability to solve the crashworthiness vehicle design.  相似文献   

8.
Although deterministic optimization has to a considerable extent been successfully applied in various crashworthiness designs to improve passenger safety and reduce vehicle cost, the design could become less meaningful or even unacceptable when considering the perturbations of design variables and noises of system parameters. To overcome this drawback, we present a multiobjective robust optimization methodology to address the effects of parametric uncertainties on multiple crashworthiness criteria, where several different sigma criteria are adopted to measure the variations. As an example, a full front impact of vehicle is considered with increase in energy absorption and reduction of structural weight as the design objectives, and peak deceleration as the constraint. A multiobjective particle swarm optimization is applied to generate robust Pareto solution, which no longer requires formulating a single cost function by using weighting factors or other means. From the example, a clear compromise between the Pareto deterministic and robust designs can be observed. The results demonstrate the advantages of using multiobjective robust optimization, with not only the increase in the energy absorption and decrease in structural weight from a baseline design, but also a significant improvement in the robustness of optimum.  相似文献   

9.
As the main safety facility on the highway, a guardrail system is very essential for the highway traffics safety. In this paper, the Finite Element (FE) models of the vehicle and the corrugated beam guardrail system were created. Two types of widely used corrugated beam semi-rigid guardrails were simulated, which were the W-beam guardrail and the Thrie-beam guardrail. The collision between the corrugated beam guardrail systems and the vehicle body was analyzed. In the collision process, the snagging effect of the post to the vehicle body was also concerned. Under the considerations of the collision safety and the mechanism of the snagging effect, the multiobjective optimization problem was defined with dimensional sizes of guardrails to be the design variables. And the radial basis function (RBF) was applied to construct the regression models of the analytical objective, which increased the accuracy of fitting. The Pareto set and the optimal solution were obtained. After the optimization design, the W-beam guardrail and Thrie-beam guardrail were both greatly improved, that increased the collision safety between the corrugated beam guardrail and the vehicle body. This kind of analytical method can also be used for the crashworthiness optimization between any other cars and guardrails.  相似文献   

10.
This paper presents a methodology for reliability-based multiobjective optimization of large-scale engineering systems. This methodology is applied to the vehicle crashworthiness design optimization for side impact, considering both structural crashworthiness and occupant safety, with structural weight and front door velocity under side impact as objectives. Uncertainty quantification is performed using two first order reliability method-based techniques: approximate moment approach and reliability index approach. Genetic algorithm-based multiobjective optimization software GDOT, developed in-house, is used to come up with an optimal pareto front in all cases. The technique employed in this study treats multiple objective functions separately without combining them in any form. It shows that the vehicle weight can be reduced significantly from the baseline design and at the same time reduce the door velocity. The obtained pareto front brings out useful inferences about optimal design regions. A decision-making criterion is subsequently invoked to select the “best” subset of solutions from the obtained nondominated pareto optimal solutions. The reliability, thus computed, is also checked with Monte Carlo simulations. The optimal solution indicated by knee point on the optimal pareto front is verified with LS-DYNA simulation results.  相似文献   

11.
Metamodels are commonly used in reliability-based design optimization (RBDO) due to the enormously expensive computation cost of numerical simulations. However, for large-scale design optimization of automotive body structure, with the increasing number of design variable and enhanced nonlinearity degree of structural performance, polynomial response surface which is commonly used for vehicle design optimization often suffers exponentially increased computation burden and serious loss of approximation accuracy. In this paper, support vector regression, along with other four complex metamodeling techniques including moving least square, artificial neural network, radial basis function and Kriging, is investigated for approximating frontal crashworthiness performance which is one of the most highly nonlinear performances. It aims at testing support vector regression and providing advanced metamodeling technique for RBDO of automotive body structure. Approximation results are compared in both accuracy and computational efficiency. Based on the frontal crashworthiness example, it is found that support vector regression and moving least square are preferable techniques to approximate structural performances with good accuracy. But support vector regression is recommended for its computational efficiency and better approximation potential. Moreover, the ensemble of support vector regression, moving least square, Kriging and artificial neural network is an effective alternative and is proved, in the RBDO example for the lightweight design of front body structure, to outperform any other single metamodel. The remarkable predominance indicates that the ensemble of support vector regression, moving least square, Kriging and artificial neural network holds great potential in approximating highly nonlinear performances for RBDO of automotive body structure.  相似文献   

12.
It is important to consider the performances of lightweight, stiffness, strength and rollover safety when designing a bus body. In this paper, the finite element (FE) analysis models including strength, stiffness and rollover crashworthiness of a bus body are first built and then validated by physical tests. Based on the FE models, the design of experiment is implemented and multiple surrogate models are created with response surface method and hybrid radial basis function according to the experimental data. After that, a multi-objective optimization problem (MOP) of the bus body is formulated in which the objective is to minimize the weight and maximize the torsional stiffness of the bus body under the constraints of strength and rollover safety. The MOP is solved by employing multi-objective evolutionary algorithms to obtain the Pareto optimal set. Finally, an optimal solution of the set is chosen as the final design and compared with the original design.  相似文献   

13.
为研究地铁头车的耐撞性及其多级能量吸收系统设计的合理性,建立能够反映真实情况的头车用半自动车钩及其剪切装置模型.利用PAMCRASH软件,参考EN 15227标准,设定模拟运营工况,计算头车与刚性墙撞击工况,得到该车吸能结构的变形模式和最大吸能量;然后计算两头车对撞工况,从逃生空间、撞击力和加速度等方面评价车体的耐撞击性.计算结果表明该地铁头车耐撞击性能良好,多级能量吸收系统设计合理.  相似文献   

14.
Structural optimization with crashworthiness constraints   总被引:1,自引:1,他引:0  
An automated structural design methodology has been devised which simultaneously considers design criteria associated with both linear elastic and crashworthiness loading conditions. This method is developed within the context of a nonlinear mathematical programming based structural optimization capability using an efficient two-phased crashworthiness analysis technique. Specially constructed nonlinear approximations for the crashworthiness constraints are employed to further reduce the computational burden during the optimization process. This methodology is demonstrated on an automobile structural design problem. It is shown that more mass efficient designs can be obtained by simultaneously considering elastic and crashworthiness design criteria as compared to a sequential approach in which the structure is first designed for the elastic loads and then modified to satisfy the crashworthiness criteria.  相似文献   

15.
In this paper the response surface methodology (RSM) and stochastic optimization (SO) are compared with regard to their efficiency and applicability in crashworthiness design. Optimization of simple analytic expressions and optimization of a front rail structure are the applications used to assess the respective qualities of both methods. A low detail vehicle structure is optimized to demonstrate the applicability of the methods in engineering practice. The investigations reveal that RSM is better compared to SO for fewer than 10–15 design variables. The convergence behaviour of SO improves compared to RSM when the number of design variables is increased. A novel zooming method is proposed which improves the convergence behaviour. A combination of both the RSM and the SO is efficient, stochastic optimization could be used in order to determine appropriate starting points for an RSM optimization, which continues the optimization. Two examples are investigated using this combined method.  相似文献   

16.
Deterministic optimization has been successfully applied to a range of design problems involving foam-filled thin-walled structures, and to some extent gained significant confidence for the applications of such structures in automotive, aerospace, transportation and defense industries. However, the conventional deterministic design could become less meaningful or even unacceptable when considering the perturbations of design variables and noises of system parameters. To overcome this drawback, a robust design methodology is presented in this paper to address the effects of parametric uncertainties of foam-filled thin-walled structure on design optimization, in which different sigma criteria are adopted to measure the variations. The Kriging modeling technique is used to construct the corresponding surrogate models of mean and standard deviation for different crashworthiness criteria. A sequential sampling approach is introduced to improve the fitness accuracy of these surrogate models. Finally, a gradient-based sequential quadratic program (SQP) method is employed from 20 different initial points to obtain a quasi-global robust optimum solution. The optimal solutions were verified by using the Monte Carlo simulation. The results show that the presented robust optimization method is fairly effective and efficient, the crashworthiness and robustness of the foam-filled thin-walled structure can be improved significantly.  相似文献   

17.
该文利用Pam—Crash对某微型客车及乘员约束系统进行了建模及仿真研究,全面研究了该微型客车的正面碰撞特性,包括结构耐撞性和乘员安全性。整个建模过程分三个阶段:白车身建模;整车建模;整车及乘员约束系统建模,每个阶段都参照相应的试验条件进行了仿真计算,所得计算结果与试验结果基本吻合,表明所建立的微型客车及乘员约束系统模型是可信的、采用的建模和计算方法是正确的。这些仿真方法可为企业改善汽车的碰撞安全性或开发新产品提供参考。  相似文献   

18.
Automotive bumper beam is an important component to protect passenger and vehicle from injury and damage induced by severe collapse. Recent studies showed that foam-filled structures have significant advantages in light weight and high energy absorption. In this paper, a novel bumper beam filled with functionally graded foam (FGF) is considered here to explore its crashworthiness. To validate the FGF bumper beam model, the experiments at both component and full vehicle levels are conducted. Parametric study shows that gradient exponential parameter m that controls the variation of foam density has significant effect on bumper beam’s crashworthiness; and the crashworthiness of FGF-filled bumper beam is found much better than that of uniform foam (UF) filled and hollow bumper beam. The multiobjective optimization of FGF-filled bumper beam is also performed by considering specific energy absorption (SEA) and peak impact force as the design objectives, and the wall thickness t, foam densities ρf1 and ρf2 (foam densities at the end and at mid cross section, respectively) and gradient exponential parameter m as design variables. The Kriging surrogate modeling technique and multiobjective particle swarm optimization (MOPSO) algorithm were implemented to optimize the FGF-filled bumper beam. The optimized FGF-filled bumper beam is of great advantages and it can avoid the harmful local bending behavior and absorb more energy than UF filled and hollow bumper beam. Finally, the optimized FGF-filled bumper beam is installed to a passenger car model, and the results demonstrate that the FGF-filled bumper beam ensures the crashworthiness performance of the passenger car while reduces weight about 14.4% compared with baseline bumper beam.  相似文献   

19.
The aim of this work is to illustrate how a space mapping technique using surrogate models together with response surfaces can be used for structural optimization of crashworthiness problems. To determine the response surfaces, several functional evaluations must be performed and each evaluation can be computationally demanding. The space mapping technique uses surrogate models, i.e. less costly models, to determine these surfaces and their associated gradients. The full model is used to correct the gradients from the surrogate model for the next iteration. Thus, the space mapping technique makes it possible to reduce the total computing time needed to find the optimal solution. First, two analytical functions and one analytical structural optimization problem are presented to exemplify the idea of space mapping and to compare the efficiency of space mapping to traditional response surface optimization. Secondly, a sub-model of a complete vehicle finite element (FE) model is used to study different objective functions in vehicle crashworthiness optimization. Finally, the space mapping technique is applied to a structural optimization problem of a large industrial FE vehicle model, consisting of 350.000 shell elements and a computing time of 100 h. In this problem the intrusion in the passenger compartment area was reduced by 32% without compromising other crashworthiness parameters.  相似文献   

20.
将原来的汽车前防撞横梁材料替换成超高强度钢后,在确保低速碰撞性能基础上,利用响应面法进行轻量化分析.建立前防撞梁有限元模型,用LS-DYNA进行低速碰撞仿真.在此基础上以横梁和吸能盒的厚度作为变量进行试验设计.构建各项碰撞性能的2阶多项式响应面模型,并验证模型的有效性.以质量和吸能作为优化目标,建立多目标优化模型.与原设计相比,求出的优化方案在保证低速碰撞性能的基础上实现前防撞梁减重36%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号