首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Electrical resistivity and Seebeck (S) measurements were performed on (La1−xSrx)MnO3 (0.02x0.50) and (La1−xSrx)CoO3 (0x0.15) in air up to 1073 K. (La1−xSrx)MnO3 (x0.35) showed a metal-to-semiconductor transition; the transition temperature almost linearly increased from 250 to 390 K with increasing Sr content. The semiconductor phase above the transition temperature showed negative values of S. (La1−xSrx)CoO3 (0x0.10) showed a semiconductor-to-metal transition at 500 K. Dominant carriers were holes for the samples of x0.02 above room temperature. LaCoO3 showed large negative values of S below ca. 400 K, indicative of the electron conduction in the semiconductor phase.  相似文献   

2.
Mixed oxides with compositions SrTi1−xyZrxMnyO3, with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 0.2 have been prepared with a conventional coprecipitation method. Some of them are constituted by very pure perovskite-type solid solution phases, with tetravalent Zr and Mn substituting for Ti in the B site. The addition of Zr to SrTiO3 tends to increase the surface areas, while the insertion of Mn tends to decrease it. Mn-containing materials are active in the catalytic combustion of 1% methane in air at temperatures higher than 700 K and can be competitive with pure manganite perovskites like LaMnO3 in spite of the lower Mn content. Pyridine adsorption experiments show that medium strength Lewis acid sites are located at the surface of these materials, and could be involved in the hydrocarbon CH bond activation.  相似文献   

3.
To clarify the effect of substitutional electron doping on the thermoelectric figure of merit (ZT = S2σTκ−1) of Ruddlesden–Popper phase SrO(SrTiO3)n (or Srn+1TinO3n+1), measurements were conducted for several thermoelectric parameters, e.g. electrical conductivity (σ), Seebeck coefficient (S) and thermal conductivity (κ), of (Sr1−xREx)n+1TinO3n+1 (n = 1 or 2, RE (rare earth): La or Nd, x = 0.05 and 0.1) dense ceramics prepared by a conventional solid-state reaction and hot-pressing technique. Crystal structures of the resultant ceramics were represented as (Sr1−xREx)n+1 TinO3n+1 evaluated by powder X-ray diffraction followed by the Rietveld analysis. All the ceramics exhibited electrical conductivity and the σ values simply depended on the dopant concentration, indicating that both La3+ and Nd3+ ions act as electron donors. The |S| values increased with temperature due to decrease in the chemical potential. Significant reduction of the κ values was observed as compared to cubic-perovskite SrTiO3. The ZT value increased with temperature and reached 0.15 at 1000 K for (Sr0.95La0.05)3Ti2O7.  相似文献   

4.
Maiden attempt has been made for the direct estimation of the contributions of silver and copper ions to the ionic conductivity in superionic solids obtained in CuI-doped silver oxysalt systems. The application of the combined electrolysis and EDS techniques towards qualitative and quantitative analyses of the mobile ionic species in solid electrolyte systems having more than one possible mobile ion is reported. These studies confirmed that these electrolyte materials are purely Ag+ conducting up to 50 mol% CuI in xCuI–(100 − x)[2Ag2O–0.7V2O5–0.3B2O3] and xCuI–(100 − x)[Ag2O–0.7MoO3–0.3WO3] systems and small fraction of tCu+ exists above 60 mol% CuI. These solid electrolyte materials exhibited a high ionic transport numbers (ti) of >0.985 and the ti increases when two glass formers are used.  相似文献   

5.
The binary systems ReS2–TaS2 and OsS2-TaS2 are studied. Mixed layer structure (MLS) phases are found in RexTa1−xS2 with a composition range of 0.25x0.5, as well as in the OsxTa1−xS2 with a composition range of 0.26x0.33. The MLSs of both phases are constructed by a random and mixed stacking of the 2Hb-layers and 3R-layers. The magnetic susceptibilities of samples from both phases show a weak Pauli-paramagnetism. The paramagnetic moment and the electrical conductivity of both phases decrease as the composition x increases. The behaviour of the paramagnetic moment and the electrical conductivity of those phases offer us a good example of the number of conduction electrons and their effect.  相似文献   

6.
We have stabilized the perovskite La2/3TiO3 by adding LaFeO3 and shown that in general the stabilization mechanism for the (1 − x)La2/3TiO3–xLaFeO3 mixture involves the formation of a solid solution for compositions with x ≥ 0.04. The crystal structure of the solid solution transforms from orthorhombic to tetragonal at x = 0.2, becomes cubic in the range 0.3 < x < 0.8, and transforms again into orthorhombic (typical for pure LaFeO3) for values greater than 0.8. Detailed impedance-spectroscopy measurements for various compositions and conditions showed that the limiting step in the conduction mechanism was conduction across the grain boundaries. In the concentration range 0.04 < x < 0.25 the room temperature conductivity increases up to 0.0017 S cm−1, after which it decreases again. Part of the initial increase is probably due to the formation of free electrons in accordance with (FeTi)′ → (FeTi)x + n′. Other defect-formation mechanisms are also discussed, but are ruled out for a variety of reasons. Another interesting phenomenon that also affected the average conductivity was identified, i.e., the variation of the average particle size with composition.  相似文献   

7.
Perovskite type La1 − xSrxMnO3 (x = 0–0.5) oxides were prepared by the amorphous citrate process, characterised by X-ray diffraction, oxygen desorption, temperature-programmed reduction, infrared and X-ray photoelectron spectroscopic techniques, and tested for methane combustion within the 473–1073 K temperature range. Since catalyst activity was found to depend strongly on BET areas and to a lesser extent, on the degree of substitution (x), intrinsic activities were computed for La1 − xSrxMnO3 catalyst series. Among the compositions investigated, the degree of substitution x = 0.2 showed the highest intrinsic activity within the temperatures explored. Characterisation techniques made possible to correlate catalytic performance with the structural characteristics of the oxides. The stability of Mn4+ is probably the most important parameter, but excess of oxygen and atomic surface composition should also be taken into account.  相似文献   

8.
Layered -titanate materials, NaxMx/2Ti1−x/2O2 (M=Co, Ni and Fe, x=0.2–0.4), were synthesized by flux reactions, and electrical properties of polycrystalline products were measured at 300–800 °C. After sintering at 1250 °C in Ar, all products show n-type thermoelectric behavior. The values of both d.c. conductivity and Seebeck coefficient of polycrystalline Na0.4Ni0.2Ti0.8O2 were ca. 7×103 S/m and ca. −193 μV/K around 700 °C, respectively. The measured thermal conductivity of layered -titanate materials has lower value than conductive oxide materials. It was ca. 1.5 Wm−1 K−1 at 800 °C. The estimated thermoelectric figure-of-merit, Z, of Na0.4Ni0.2Ti0.8O2 and Na0.4Co0.2Ti0.8O2 was about 1.9×10−4 and 1.2×10−4 K−1 around 700 °C, respectively.  相似文献   

9.
采用高温固相法制备磷灰石型硅酸镧陶瓷La9.4Ba0.6Si6-xInxO27-δx=0,0.1,0.2,0.3,0.4)。采用XRD、SEM和拉曼光谱等测试分析手段表征了La9.4Ba0.6Si6-xInxO27-δ固体电解质掺杂体系的相组成和微观形貌特征;采用交流阻抗谱测试研究了La9.4Ba0.6Si6-xInxO27-δ掺杂体系在不同温度下的电导率变化规律。研究发现,所有La9.4Ba0.6Si6-xInxO27-δ陶瓷试样的结晶度良好且均具有氧基磷灰石结构;仅在La位掺杂Ba 2+时,La9.4Ba0.6Si6O27-δ试样晶粒形貌不规则,In 3+掺杂后晶粒呈等轴状均匀生长。各个试样的总电导率与测试温度之间符合Arrhenius关系。In 3+最佳掺杂量x为0.2,此时La9.4Ba0.6Si5.8In0.2O27-δ陶瓷具有最高的电导率,其电导率(1 073 K)、活化能和指前因子分别为5.08×10 -3 S/cm、0.86 eV和2.91×10 11 S·K/cm。  相似文献   

10.
Catalytic methane combustion and CO oxidation were investigated over AFeO3 (A=La, Nd, Sm) and LaFe1−xMgxO3 (x=0.1, 0.2, 0.3, 0.4, 0.5) perovskites prepared by citrate method and calcined at 1073 K. The catalysts were characterized by X-ray diffraction (XRD). Redox properties and the content of Fe4+ were derived from temperature programmed reduction (TPR). Specific surface areas (SA) of perovskites were in 2.3–9.7 m2 g−1 range. XRD analysis showed that LaFeO3, NdFeO3, SmFeO3 and LaFe1−xMgxO3 (x·0.3) are single phase perovskite-type oxides. Traces of La2O3, in addition to the perovskite phase, were detected in the LaFe1−xMgxO3 catalysts with x=0.4 and 0.5. TPR gave evidence of the presence in AFeO3 of a very small fraction of Fe4+ which reduces to Fe3+. The fraction of Fe4+ in the LaFe1−xMgxO3 samples increased with increasing magnesium content up to x=0.2, then it remained nearly constant. Catalytic activity tests showed that all samples gave methane and CO complete conversion with 100% selectivity to CO2 below 973 and 773 K, respectively. For the AFeO3 materials the order of activity towards methane combustion is La>Nd>Sm, whereas the activity, per unit SA, of the LaFe1−xMgxO3 catalysts decreases with the amount of Mg at least for the catalysts showing a single perovskite phase (x=0.3). Concerning the CO oxidation, the order of activity for the AFeO3 materials is Nd>La>Sm, while the activity (per unit SA) of the LaFe1−xMgxO3 catalysts decreases at high magnesium content.  相似文献   

11.
Structural, redox and catalytic deep oxidation properties of LaAl1−xMnxO3 (x=0.0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0) solid solutions prepared by the citrate method and calcined at 1073 K were investigated. XRD analysis showed that all the LaAl1−xMnxO3 samples are single phase perovskite-type solid solutions. Particle sizes and surface areas (SA) are in the 280–1180 Å and 4–33 m2 g−1 ranges, respectively. Redox properties and the content of Mn4+ were derived from temperature programmed reduction (TPR) with H2. Two reduction steps are observed by TPR for pure LaMnO3, the first attributed to the reduction of Mn4+ to Mn3+ and the second due to complete reduction of Mn3+ to Mn2+. The presence of Al in the LaAl1−xMnxO3 solid solutions produces a strong promoting effect on the Mn4+→Mn3+ reducibility and inhibits the further reduction to Mn2+. Both for methane combustion and CO oxidation all Mn-containing perovskites are much more active than LaAlO3, so pointing to the essential role of the transition metal ion in developing highly active catalysts. Partial dilution with Al appears to enhance the specific activity of Mn sites for methane combustion.  相似文献   

12.
Layered Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 materials with x = 0, 0.01, 0.02, 0.03, 0.05 are prepared by a solid-state pyrolysis method. The oxide compounds were calcined with various Cr-doped contents, which result in greater difference in morphological (shape, particle size and specific surface area) and the electrochemical (first charge profile, reversible capacity and rate capability) differences. The Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 powders were characterized by means of X-ray diffraction (XRD), charge/discharge cycling, cyclic voltammetry, and SEM. XRD experiment revealed that the Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 (x = 0, 0.01, 0.02, 0.03, 0.05) were crystallized to well layered -NaFeO2 structure. The first specific discharge capacity and coulombic efficiency of the electrode of Cr-doped materials were higher than that of pristine material. When x = 0.02, the sample showed the highest first discharge capacity of 241.9 mAh g−1 at a current density of 30 mA g−1 in the voltage range 2.3–4.6 V, and the Cr-doped samples exhibited higher discharge capacity and better cycleability under medium and high current densities at room temperature.  相似文献   

13.
Ten weight percent BBZS (Bi2O3, B2O3, ZnO and SiO2) glass was added to x(Ba4Nd9.333Ti18O54) − (1 − x)(BaLa4Ti4O15) (BNLT, 0 ≤ x ≤ 1) composite dielectric ceramics to lower their sintering temperature whilst retaining microwave properties useful for low temperature co-fired ceramic and antenna core technology. With the addition of 10 wt% BBZS glass, dense BNLT composite ceramics were produced at temperatures between 950 and 1140 °C, depending on composition (x), an average reduction of sintering temperature by 350 °C. X-ray diffraction, scanning and transmission electron microscopy and Raman spectroscopy studies revealed that there was limited inter-reaction between BLT/BNT and the BBZS glass. Microwave property measurement showed that the addition of BBZS glass to BNLT ceramics had a negligible effect on r and τf, although deterioration in the measured quality factor (Qf) was observed. The optimised composition (xBNT − (1 − x)BLT)/0.1BBZS (x = 0.75) had r  61, τf  38 ppm/°C and Qf  2305 GHz.  相似文献   

14.
The structure evolution, and microwave dielectric properties of Nd(2−x)/3LixTiO3 ceramics (0 ≤ x ≤ 0.5) were investigated in this paper. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results show that samples with x = 0.2–0.4 exhibit single phase. Multi-phases of Nd2Ti2O7, Nd2/3TiO3 and Nd2Ti4O11 were observed when x = 0 and 0.1. The concentration and ordering degree of A-site decrease with the increase of x value. The dielectric constant increases up to x = 0.2 and then decreases with the further increase of x value. The Qf value decreases with the increase of x value. The temperature coefficient of resonant frequency exhibits negative value and the absolute value decreases greatly with the decrease of x value.  相似文献   

15.
Rutile-type Cr/V/Sb mixed oxides, catalysts for the ammoxidation of propane to acrylonitrile, were prepared and characterized. For atomic ratios between components equal to Cr/V/Sb 1/x/1 and 1/x/2 the systems were monophasic, but different types of compounds formed depending on the ratio between the three metals. The compositional parameter which most affected the nature of the compound formed was the (Cr+V)/Sb atomic ratio. When this ratio was between 2 and ≈1, a rutile Cr3+/V4+/Sb5+ mixed oxide of composition Cr1VxSb1O4+2x developed (0<x<1), which in practice corresponds to a solid solution between 1 CrSbO4 and x VO2. When the (Cr+V)/Sb ratio was between 0.5 and ≈1, a rutile Cr3+/V3+/Sb3+/Sb5+ mixed oxide of composition CrVxSb1+x+2zO4+4x+4z developed (0<x<1), which corresponds to a solid solution between 1 Cr3+Sbz3+Sb1+z5+O4+4z and x VSbO4. The distinction between the two classes of compounds was not clear-cut, and when the (Cr+V)/Sb atomic ratio was around 1, mixed oxides containing both V3+ and V4+ formed. Values of the (Cr+V)/Sb atomic ratio lower than ≈0.5 led to the additional formation of antimony oxide.  相似文献   

16.
Ceramics with a composition close to BaZn2Ti4O11 were synthesized according to various substitutional mechanisms in order to verify an existence of a homogeneity range in the vicinity of this composition. Structural and microstructural investigations showed that the crystal structure of BaZn2Ti4O11 was formed in the homogeneity range corresponding to the formula BaZn2 − xTi4O11 − x (0 < x < 0.1). Densely sintered BaZn2 − xTi4O11 − x (0 < x < 0.1) ceramics exhibited a dielectric constant around 30, τf = −30 ppm/K and high Q × f values, which increased from 68,000 GHz at x = 0 to 83,000 GHz at x = 0.05. Structurally, the deficiency of Zn in BaZn2 − xTi4O11 − x (0 < x < 0.1) resulted in a slight decrease in the unit-cell volume. The influence of secondary phases in the BaZn2Ti4O11-based materials on the microwave dielectric properties was also investigated. A presence of small amounts of ZnO, BaTiO3, hollandite-type solid solutions (BaxZnxTi8 − xO16) and BaTi4O9 caused a decrease in Q × f values.  相似文献   

17.
Perovskites of different La1−xSrxAl1−yyFeyMgyO3−δ compositions (x=0, 0.1, 0.15, 0.2 and y=0.1, 0.3, 0.5, 0.8) were prepared from a reactive precursor slurry of hydrated oxides. Each sample was aged between 16 and 26 h up to 1473 K. Activity in methane combustion (1%/air) was determined in a plug-flow reactor, with 1 g catalyst and 24 l/h flowrate. Gradual decrease in activity due to thermal aging was observed, the degree of activity loss being composition dependent. Nevertheless, activity of samples aged at 1370 K was nearly independent of composition. The best thermal stability showed LaAl0.65Fe0.15Mg0.2O3 perovskite. None of the magnesium substituted perovskites performed better than a La0.85Sr0.15Al0.87Fe0.13O3 reference sample.  相似文献   

18.
In this work, different procedures, namely carbonate coprecipitation and modified solid–solid diffusion, were used to prepare hexaaluminate samples, unsupported or supported onto θ-Al2O3. These samples were used as catalyst for the methane total oxidation as synthesized or after impregnation of 1 wt% Pd. It was observed that the modified solid–solid diffusion procedure is an efficient method to obtain the hexaaluminate structure. At a theoretical ratio x of hexaaluminate onto Al2O3 less than 0.6 (xLa0.2Sr0.3Ba0.5MnAl11O19 + (1−x)·Al2O3, with x = 0.25, 0.60), samples with high specific surface area and θ-Al2O3 structure are then obtained. Large differences in catalytic activity can be observed among the series of sample synthesized. All the pure oxide samples (i.e. without palladium) present low catalytic activity for methane total oxidation compared to a reference Pd/Al2O3 catalyst. The highest activity was obtained for the samples presenting a θ-Al2O3 structure (with x = 0.60) and a high surface area. Impregnation of 1 wt% palladium resulted in an increase in catalytic activity, for all the solids synthesized in this work. Even if the lowest light-off temperature was obtained on the reference sample, similar methane conversions at high temperature (700 °C) were obtained on the stabilized θ-Al2O3 solids (x = 0.25, 0.60). Moreover, the reference sample is found to strongly deactivate with reaction time at the temperature of test (700 °C), due to a progressive reduction of the PdOx active phase into the less active Pd° phase, whereas excellent stabilities in reaction were obtained on the pure and palladium-doped hexaaluminate and supported θ-Al2O3 samples. This clearly showed the beneficial effect of the support for the stabilization of the PdOx active phase at high reaction temperature. These properties are discussed in term of oxygen transfer from the support to the palladium particle. Oxygen transfer is directly related to the Mn3+/Mn2+ redox properties (in the case of the hexaaluminate and stabilized θ-Al2O3 samples), that allows a fast reoxidation of the metal palladium sites since palladium sites reoxidation cannot occur directly by gaseous dioxygen adsorption and dissociation on the surface.  相似文献   

19.
The electronic states of LaMn1−xCuxO3+λ (x=0–0.4) have been studied with X-ray photoelectron spectroscopy (XPS). The valence states of substituted copper ions were Cu2+ and the manganese ions were a highly mixed state of Mn3+ and Mn4+. The nonstoichiometry and electronic state of lattice oxygen have been studied. The samples at x=0 and 0.1 had an excess of lattice oxygen but those at x=0.2–0.4 had lattice oxygen deficiency. A modified Auger parameter (Δ′) was used to evaluate the electronic states of oxygen ions. The Δ′ of lattice oxygen increased with increasing substitute quantity. This increase of Δ′ reflected the decrease of ionic bond character of lattice oxygen. The adsorbed oxygen species on LaMn1−xCuxO3+λ was assigned mainly as O from the peak positions of spectra for the O 1s and O KLL levels, and the Δ′ of this O decreased with x. This decrease, i.e., the increase of ionic bond character of adsorbed oxygen was correlated well with the value of nonstoichiometry of lattice oxygen.

The rate of CO oxidation at 448 K was increased by the substitution till x=0.4. We consider that this enhancement of reactivity comes from the change of electronic state of adsorbed oxygen, O itself, i.e., a weak interaction between O and low coordinated metal site brings about a high reactivity.  相似文献   


20.
The weight and plaque diameter change following trermal treatment, and the density and lattice constant of lithium-rich LixNi1−xO solid solutions obtained by heat treatment at 750°C of Li2CO3---LiyNi1−yO (y < x) mixtures were measured as a function of time. It was found that densification of the solid solutions depends on the method of obtaining the Li2CO3---LiyNi1−yO mixtures. When a large amount of carbonate is put into the starting mixtures Ni---Li2CO3-binder, and the powders are milled together, sintering occurs; in contrast, when the carbonate is added after the formation of LiyNi1−yO solid solution, so that the interstices of the plaque are filled with molten carbonate, the resulting mixtures exhibit no densification. For densification to occur, Li2CO3 must be in intimate contact with the lithium-doped NiO grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号