共查询到18条相似文献,搜索用时 78 毫秒
1.
采用模糊聚类分析方法,应用隶属度来描述负荷与影响负荷变化因素之间的关系,得到一批与预测日在样本信息上类似的历史日;改进RBF网络的训练算法,增强RBF网络的局部逼近能力和泛化能力,采用由模糊聚类分析获得的样本对RBF网络进行训练,在不需大量训练样本的前提下实现对短期负荷的预测.对浙江省某地区电网的实际负荷数据仿真结果表明:该方法预测的日平均相对误差为1.91%,预测准确度为97.41%. 相似文献
2.
3.
基于模糊聚类识别及统计相关的短期负荷预测 总被引:5,自引:4,他引:5
应用模糊聚类理论,通过对负荷历史数据进行聚类和隶属度分析,依据模糊聚类和模糊模式识别、类别(或级别)变量特征值与概率统计相关分析等模型,根据模糊聚类参数与预测因子的前期特征值,确定相应的类别变量特征值,建立类别变量特征值与预测对象之间的相关关系,利用此相关关系进行负荷预测。应用隶属度来描述负荷与影响负荷因素之间的相关关系,可以同时考虑多种影响负荷因素,在算法上只是隶属度矩阵的阶数发生变化,预测过程简单明了。实践结果表明,此方法具有较高的预测精度,能较好地适应不同地区的负荷特性。 相似文献
4.
基于模糊聚类的神经网络短期负荷预测方法 总被引:10,自引:12,他引:10
针对电力负荷的特点,综合考虑天气、日类型、历史负荷等对未来负荷变化的影响,提出了一种新的短期负荷预测方法。通过模糊聚类选取学习样本,采用反向传播算法,对24点每点建立一个预测模型。该方法充分发挥了神经网络和模糊理论处理非线性问题的能力,提高了学习效能,在负荷平稳的季节和负荷波动较大的季节都具有较好的预测精度。 相似文献
5.
一种电力系统短期负荷预测的新方法 总被引:5,自引:0,他引:5
依据模糊聚类理论,提出一种短期负荷预测的新方法,应用相应的隶属度来描述负荷与影响负荷因素之间的关系。实践表明:该方法可以较多的考虑各种影响因素,从而较大地提高了预测的精度。 相似文献
6.
针对传统数据挖掘算法(神经网络和支持向量机)进行短期负荷预测容易陷入局部最优,模型难以确定等问题,提出一种模糊聚类技术与随机森林回归算法结合的短期负荷预测方法。基于模糊聚类技术选取相似日的方法,考虑负荷的周期性变化特征,利用样本输入进行样本聚类,选取同类数据作训练样本,建立随机森林负荷预测模型。实例中负荷数据采用安徽省某地的历史负荷,用上述方法对该地区的日24小时负荷进行预测,并与传统的支持向量机和BP神经网络方法进行比较,验证了该方法的有效性。 相似文献
7.
针对BP网络的缺陷,提出了一种基于RBF神经网络的短期负荷预测方法,利用遗传算法训练神经网络,使神经网络以较快的收敛速度和较大的概率得到了最优解。实例研究结果表明该方法可以取得较高的预测精度。 相似文献
8.
提出了一种免疫聚类径向基函数神经网络(ICRBFNN)模型来预测电力系统短期负荷。在ICRBFNN的设计中,根据共生进化和免疫规划原理,提出了共生进化免疫规划聚类算法,该算法可以自动确定RBF网络隐层中心的数量和位置,并采用递推最小二乘法确定网络输出层的权值。对华东某市进行的电力系统短期负荷预测表明,与传统的径向基函数神经网络(RBFNN)预测方法相比,ICRBFNN方法具有更高的预测精度和更短的训练时间。 相似文献
9.
电力系统短期负荷预测的模糊神经网络方法 总被引:5,自引:0,他引:5
针对电力系统短期负荷预测问题,考虑到气象因素对负荷的影响,提出了一种模糊神经网络的短期负荷预测方法,首先根据评价函数选取相似日学习样本,然后利用隶属函数对影响负荷的特征因素向量的分量进行模糊处理,采用反向传播算法,对24点每点建立一个预测模型,提高了学习效能,适合在短期负荷预测中使用,具有较好的预测精度。 相似文献
10.
11.
在分析了某地区日平均负荷曲线的年周期性、周周期性、日周期性的基础上提出了每日24个整点负荷值的分段预测模型。根据该模型建立相应的RBF神经网络进行预测。并将预测结果与实际负荷值、由传统的BP网络模型得到的结果分别进行了对比分析,表明这种模型结合RBF神经网络的预测效果具有较高的精度,具备了一定的实用价值。 相似文献
12.
应用近邻传播算法改进RBF的短期负荷预测 总被引:3,自引:0,他引:3
为了更有效地挖掘电力负荷样本数据的信息规律,提高径向基函数RBF(radial basis function)神经网络的预测精度,提出了一种引入近邻传播思想的RBF神经网络算法。该算法根据电力负荷数据的内部周期相似性规律,利用近邻传播算法将样本数据进行聚类处理,获取样本数据的类中心点,并将此作为RBF神经网络的中心矢量,同时根据类中心距离设置基宽,最终实现样本数据的训练以及未来电力负荷的短期预测。通过对未来一天的负荷预测,验证了该思路,为电力负荷短期预测提供了一种新方法。 相似文献
13.
针对体感温度与负荷之间的变化关系进行了深入研究,研究表明体感温度在不同范围内变化时将对地区负荷影响表现出截然不同特征。将负荷分为对体感温度敏感和不敏感2种类别,并提出2种负荷预测方法。2种负荷预测方法均以径向基神经网络为基础,并针对不同类型待预测负荷采取差异化样本选取和处理方法,有效提高了该负荷预测模型适用性和负荷预测精度。将该方法运用到某市总负荷预测中,预测结果表明该方法具有较高精度和较好实用性,是一种有效的短期负荷预测新方法。 相似文献
14.
姜勇 《电力系统保护与控制》2002,30(7):11-13
针对电力系统短期负荷预测问题 ,考虑气象因素对负荷的影响 ,提出了一种模糊神经网络的短期负荷预测方法 ,首先根据评价函数选取相似日学习样本 ,然后利用隶属函数对影响负荷的特征因素向量的分量进行模糊处理 ,采用反向传播算法 ,对 2 4点每点建立一个预测模型 ,提高了学习效能。本方法适合在短期负荷预测中使用 ,具有较好的预测精度。 相似文献
15.
改进径向函数网格(RBFN)在电力负荷预报中的应用 总被引:2,自引:0,他引:2
王辛 《中国电机工程学报》1996,16(4):285-287
本文根据电力系统短期负荷预报的特点和径向基函数神经网络的非线性辨识功能,提出了一种负荷预报的新算法-RBFN算法。该算法能够体现负荷的波动性和气候对负荷的影响,收敛速度较快,由于采用丛聚技术调整径向基函数中心,该算法具有较高的预报精度,通过对实际系统的实验表明:可用于提前24小时的电力系统负荷预报。 相似文献
16.
基于混合算法的短期负荷预测模糊建模 总被引:3,自引:0,他引:3
结合最小二乘(LS)辨识以及一种基于进化规划(EP)和粒子群优化(PSO)的混合进化算法EPPSO,针对对温度比较敏感的夏季负荷,提出一种3阶段短期负荷预测(STLF)算法。在第1阶段,应用LS设计模糊基函数网络(FBFN)完成STLF模糊空间划分;第2阶段,首先拓展FBFN成一阶Sugeno模糊模型,然后应用EPPSO调节其前件参数同时训练后件参数,最后将前述模型用于STLF得出的预测误差看做一个新的时间序列,并仅用气象因素对其进行辨识,可以用回归模型表示该辨识模型,进而应用LS进行辨识。文中提出的STLF模糊建模策略主要贡献于受气象因素影响较大的夏季负荷。仿真部分对浙江省电力公司的实际负荷进行了预测,与其他方法的比较结果证明该方法具有良好的预测性能。 相似文献
17.
将改进的TSK型模糊神经网络(fuzzy neural network,FNN)应用于短期负荷预测。该FNN由椭圆基函数构成神经元的中心和宽度参数,并且具有以下特征:网络结构和参数可自动并同时进行调整,不需提前分割输入空间,也不需提前选择网络初始参数;模糊规则在学习过程中可动态增删,不需采用迭代算法即可快速生成。这种模糊规则可动态增删的模糊神经网络(growing and pruning fuzzy neural network,GPFNN)简单有效,可以降低网络的复杂性,加快网络的学习速度。使用EUNITE竞赛数据作测试数据对上述GPFNN方法进行测试,结果表明采用该方法进行短期负荷预测时可获得较高的准确率。 相似文献
18.
提出了一种交替梯度算法对径向基函数(RBF)神经网络的训练方法进行改进,并将之运用于电力系统短期负荷预测。交替梯度算法通过优化输出层权值和优化RBF函数的中心与标准偏差值来实现。改进的算法与传统梯度下降算法相比,具有更快的收敛速度和更高的预测精度。所构建的负荷预测模型综合考虑了气象、日类型等影响负荷变化的因素,并在预测形式上做了巧妙处理。预测结果表明改进的RBF网络算法具有一定的实用性。 相似文献