共查询到19条相似文献,搜索用时 62 毫秒
1.
采用模糊聚类分析方法,应用隶属度来描述负荷与影响负荷变化因素之间的关系,得到一批与预测日在样本信息上类似的历史日;改进RBF网络的训练算法,增强RBF网络的局部逼近能力和泛化能力,采用由模糊聚类分析获得的样本对RBF网络进行训练,在不需大量训练样本的前提下实现对短期负荷的预测.对浙江省某地区电网的实际负荷数据仿真结果表明:该方法预测的日平均相对误差为1.91%,预测准确度为97.41%. 相似文献
2.
3.
基于模糊聚类的神经网络短期负荷预测方法 总被引:10,自引:12,他引:10
针对电力负荷的特点,综合考虑天气、日类型、历史负荷等对未来负荷变化的影响,提出了一种新的短期负荷预测方法。通过模糊聚类选取学习样本,采用反向传播算法,对24点每点建立一个预测模型。该方法充分发挥了神经网络和模糊理论处理非线性问题的能力,提高了学习效能,在负荷平稳的季节和负荷波动较大的季节都具有较好的预测精度。 相似文献
4.
基于模糊聚类识别及统计相关的短期负荷预测 总被引:5,自引:4,他引:5
应用模糊聚类理论,通过对负荷历史数据进行聚类和隶属度分析,依据模糊聚类和模糊模式识别、类别(或级别)变量特征值与概率统计相关分析等模型,根据模糊聚类参数与预测因子的前期特征值,确定相应的类别变量特征值,建立类别变量特征值与预测对象之间的相关关系,利用此相关关系进行负荷预测。应用隶属度来描述负荷与影响负荷因素之间的相关关系,可以同时考虑多种影响负荷因素,在算法上只是隶属度矩阵的阶数发生变化,预测过程简单明了。实践结果表明,此方法具有较高的预测精度,能较好地适应不同地区的负荷特性。 相似文献
5.
针对传统数据挖掘算法(神经网络和支持向量机)进行短期负荷预测容易陷入局部最优,模型难以确定等问题,提出一种模糊聚类技术与随机森林回归算法结合的短期负荷预测方法。基于模糊聚类技术选取相似日的方法,考虑负荷的周期性变化特征,利用样本输入进行样本聚类,选取同类数据作训练样本,建立随机森林负荷预测模型。实例中负荷数据采用安徽省某地的历史负荷,用上述方法对该地区的日24小时负荷进行预测,并与传统的支持向量机和BP神经网络方法进行比较,验证了该方法的有效性。 相似文献
6.
一种电力系统短期负荷预测的新方法 总被引:5,自引:0,他引:5
依据模糊聚类理论,提出一种短期负荷预测的新方法,应用相应的隶属度来描述负荷与影响负荷因素之间的关系。实践表明:该方法可以较多的考虑各种影响因素,从而较大地提高了预测的精度。 相似文献
7.
针对BP网络的缺陷,提出了一种基于RBF神经网络的短期负荷预测方法,利用遗传算法训练神经网络,使神经网络以较快的收敛速度和较大的概率得到了最优解。实例研究结果表明该方法可以取得较高的预测精度。 相似文献
8.
提出了一种免疫聚类径向基函数神经网络(ICRBFNN)模型来预测电力系统短期负荷。在ICRBFNN的设计中,根据共生进化和免疫规划原理,提出了共生进化免疫规划聚类算法,该算法可以自动确定RBF网络隐层中心的数量和位置,并采用递推最小二乘法确定网络输出层的权值。对华东某市进行的电力系统短期负荷预测表明,与传统的径向基函数神经网络(RBFNN)预测方法相比,ICRBFNN方法具有更高的预测精度和更短的训练时间。 相似文献
9.
10.
针对电力系统短期负荷预测问题,考虑到气象因素对负荷的影响,提出了一种模糊神经网络的短期负荷预测方法,首先根据评价函数选取相似日学习样本,然后利用隶属函数对影响负荷的特征因素向蜈的分量进行模糊处理,采用反向传播算法,对24点每点建立一个预测模型。提高了学习效能,本方法适合在短期负荷预测中使用,具有较好的预测精度。 相似文献
11.
在分析了某地区日平均负荷曲线的年周期性、周周期性、日周期性的基础上提出了每日24个整点负荷值的分段预测模型。根据该模型建立相应的RBF神经网络进行预测。并将预测结果与实际负荷值、由传统的BP网络模型得到的结果分别进行了对比分析,表明这种模型结合RBF神经网络的预测效果具有较高的精度,具备了一定的实用价值。 相似文献
12.
基于神经网络-模糊推理综合模型的短期负荷预测 总被引:3,自引:0,他引:3
针对由于神经元网络泛化能力不足等原因造成的预测精度不高甚至出现坏数据从而难以适用于负荷波动厉害的电网情况,提出一种基于神经网络-模糊推理综合模型的短期负荷预测方法。该方法结合了神经网络和模糊推理的优点,通过模糊推理来修正神经网络输出的预测结果,能有效地提高预测精度。特别是对于受天气影响比较明显而天气变化又比较剧烈的电网,能有效防止不合理预测结果的出现。在武汉电网的实际运行情况说明了本算法的有效性。 相似文献
13.
姜勇 《电力系统保护与控制》2002,30(7):11-13
针对电力系统短期负荷预测问题 ,考虑气象因素对负荷的影响 ,提出了一种模糊神经网络的短期负荷预测方法 ,首先根据评价函数选取相似日学习样本 ,然后利用隶属函数对影响负荷的特征因素向量的分量进行模糊处理 ,采用反向传播算法 ,对 2 4点每点建立一个预测模型 ,提高了学习效能。本方法适合在短期负荷预测中使用 ,具有较好的预测精度。 相似文献
14.
15.
16.
提出了一种交替梯度算法对径向基函数(RBF)神经网络的训练方法进行改进,并将之运用于电力系统短期负荷预测。交替梯度算法通过优化输出层权值和优化RBF函数的中心与标准偏差值来实现。改进的算法与传统梯度下降算法相比,具有更快的收敛速度和更高的预测精度。所构建的负荷预测模型综合考虑了气象、日类型等影响负荷变化的因素,并在预测形式上做了巧妙处理。预测结果表明改进的RBF网络算法具有一定的实用性。 相似文献
17.
结合神经网络和专家库系统对地区电网进行短期负荷预测,利用神经网络的非线性函数逼近能力进行基本负荷预测,在此基础上结合天气专家库系统再进行负荷调整。此方法已用于地区电网负荷预测,预测结果表明此方法是实用有效的,精度满足实用要求。 相似文献
18.
气温、气压等天气因素决定了人体舒适度。随着社会经济的快速发展,空调和取暖负载在总用电负荷中的比重日益增加,天气对负荷波动的影响越来越明显。提出了一种考虑风速、降水、气压、气温、湿度等天气数据的径向基(RBF)神经网络日负荷预测模型,用实际负荷数据和天气数据进行训练,将预测结果与BP网络模型得到的结果进行比较,表明了该模型的优越性,也介绍了基于该模型和LabVIEW、Matlab的负荷预测虚拟仪器的前面板和流程图设计过程。结果表明,提出的模型算法简单、精度高、稳定性好,用虚拟仪器进行电力负荷预测具有操作简单、直观、节省费用等优点。所介绍的方法可以用于其它类型负荷预测模型的虚拟实现。 相似文献
19.
针对非平稳的家庭短期负荷数据,直接套用预测模型难以挖掘出更深层次的时序特征。提出一种经验模式分解(Empirical Mode Decomposition, EMD)和堆栈式长短期记忆(Stack Long Short-term Memory, SLSTM)的组合算法应用于家庭短期负荷预测。首先分析了SLSTM和EMD原理,提出EMD-SLSTM组合预测模型。将负荷数据通过EMD算法进行分解,然后将分解后的分量数据分别转化为三维数据样本。通过设计SLSTM网络架构及其参数,对归一化的分量数据和原始数据分别进行预测建模及其重构。为显示算法预测性能,实验对比了支持向量回归、人工神经网络、深度神经网络、梯度提升回归等模型在两种情景下的性能,采用MAPE和RMSE性能度量进行验证。实验结果表明EMD-SLSTM更能有效地表达出家庭短期负荷的时序关系,具有更高的预测精度。 相似文献