首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Bioinspired artificial nanochannels exhibiting ion transport properties similar to biological ion channels have been attracting some attention for biosensors, separation technologies, and nanofluidic diodes. Herein, an easily available artificial heterogeneous nanochannel shows both ion gating and ion rectification characteristics when irradiated by ultraviolet light. The fabrication of heterogeneous nanochannels includes the coating of an anatase TiO2 porous layer on an alumina porous supporter, followed by a chemical modification with octadecyltrimethoxysilane (OTS) molecules. The irreversible decomposition of OTS molecules by TiO2 photocatalysis under ultraviolet light results in a change of surface wettability and an asymmetric distribution of surface negative charges simultaneously, which contributes to the ion gating and ion rectification. The asymmetric distribution of negative charges in the TiO2 porous layer can be controlled by the irradiation time of ultraviolet light, which regulates the ion rectification characteristic.  相似文献   

2.
3.
The biochemical oscillatory reaction induced self‐gating process of biological ion channels is essential to life processes, characterized as autonomous, continuous, and periodic. However, few synthetic nanochannel systems can achieve such excellent self‐gating property. Their gating properties work greatly depending on the frequent addition of reactants or the supply of external stimuli. Herein, a novel bioinspired self‐gating nanofluidic device that can transport mass in a continuous and periodic manner is reported. This self‐gating device is constructed by using a fully closed‐system pH oscillator to control the gating processes of the artificial proton‐gated nanochannels. With cyclic oscillation of protons inside the nanochannel induced by the oscillatory chemical reactions of the pH oscillator, surface charge density and polarity of the nanochannels can be self‐regulated, resulting in an autonomous and periodic switching of the nanochannel conductance between high and low states as well as the selectivity between cation selective and anion selective states. Moreover, by using Rhodamine B and Ruthenium(II) compound as the cationic cargoes, periodic release of these charged molecules is also observed. Therefore, this work opens up a new avenue to build self‐gating nanofluidic devices, which may not only act as ion oscillators, but potentially find applications in controlled‐release fields as well.  相似文献   

4.
4‐oxo‐4‐(pyren‐4‐ylmethoxy) butanoic acid is used as a photolabile protecting group to show the optical gating of nanofluidic devices based on synthetic ion channels. The inner surface of the channels is decorated with monolayers of photolabile hydrophobic molecules that can be removed by irradiation, which leads to the generation of hydrophilic groups. This process can be exploited in the UV‐light‐triggered permselective transport of ionic species in aqueous solution through the channels. The optical gating of a single conical nanochannel and multichannel polymeric membranes is characterised experimentally and theoretically by means of current–voltage and selective permeation measurements, respectively. It is anticipated that the integration of nanostructures into multifunctional devices is feasible and can readily find applications in light‐induced controlled release, sensing, and information processing.  相似文献   

5.
Inspired by the light‐driven, cross‐membrane proton pump of biological systems, a photoelectric conversion system based on a smart‐gating, proton‐driven nanochannel is constructed. In this system, solar energy is the only source of cross‐membrane proton motive force that induces a diffusion potential and photocurrent flowing through the external circuit. Although the obtained photoelectric conversion performance is lower than that of conventional solid photovoltaic devices, it is believed that higher efficiencies can be generated by enhancing the protonation capacity of the photo‐acid molecules, optimizing the membrane, and synthesizing high‐performance photosensitive molecules. This type of facile and environmentally friendly photoelectric conversion has potential applications for future energy demands such as the production of power for in vivo medical devices.  相似文献   

6.
For the first time, the integration of a smart homopolymer poly[2–(dimethylamino) ethyl methacrylate] (PDMAEMA), which undergoes both pH‐ and temperature‐induced conformational transitions, is demonstrated in a single glass conical nanopore channel, to achieve a smart nanodevice that can be reversibly switched between the high conducting “on” state and low conducting “off” state with high gating efficiency due to the conformational changes of the homopolymer brush effected by varying the pH and temperature of the surrounding media.  相似文献   

7.
The piezotronic effect has been extensively investigated and applied to the third generation of semiconductors. However, there currently is no effective method compatible with microelectronics techniques to harness the piezotronic effect. In this work, a facile and low‐energy‐consuming method to couple the channel‐width gating effect with piezotronic devices is developed by precisely patterning ion‐gel electrolyte on ZnO NW. The ultrahigh capacitance of ion gel resulting from electrical double layers allows efficient modulation of the charge carrier density in ZnO NW at low gate voltage (2 V) to compensate for the piezotronic effect. The obtained output current variation under negative gate voltage (420%, i.e., enhanced piezotronic effect) is two times higher than that under zero or positive gate biases (200%). Through quantifying the reverse‐biased Schottky barrier height and charge carrier density, it is found that the applied negative gate voltage depletes free electrons in ZnO NW and alleviates the screening effect on piezoelectric polarization charges, leading to enhanced piezotronic effect. Based on this, an ion‐gel‐gated piezotronic strain sensor is fabricated with enhanced gauge factor and tunable logic devices. It is believed that the coupled ion‐gel and piezotronic gating effect is of great significance to the design of sophisticated and practical piezotronic devices.  相似文献   

8.
A novel three‐electrode electrolyte supercapacitor (electric double‐layer capacitor [EDLC]) architecture in which a symmetrical interdigital “working” two‐electrode micro‐supercapacitor array (W‐Cap) is paired with a third “gate” electrode that reversibly depletes/injects electrolyte ions into the system controlling the “working” capacity effectively is described. All three electrodes are based on precursor‐derived nanoporous carbons with well‐defined specific surface area (735 m2 g?1). The interdigitated architecture of the W‐Cap is precisely manufactured using 3D printing. The W‐Cap operating with a proton conducting PVA/H2SO4‐hydrogel electrolyte and high capacitance (6.9 mF cm?2) can be repeatedly switched “on” and “off”. By applying a low DC bias potential (?0.5 V) at the gate electrode, the AC electroadsorption in the coupled interdigital nanoporous carbon electrodes of the W‐Cap is effectively suppressed leading to a stark capacity drop by two orders of magnitude from an “on” to an “off” state. The switchable micro‐supercapacitor is the first of its kind. This general concept is suitable for implementing a broad range of nanoporous materials and advanced electrolytes expanding its functions and applications in future. The integration of intelligent functions into EDLC devices has extensive implications for diverse areas such as capacitive energy management, microelectronics, iontronics, and neuromodulation.  相似文献   

9.
Inspired by the asymmetric structure and responsive ion transport in biological ion channels, organic/inorganic hybrid artificial nanochannels exhibiting pH‐modulated ion rectification and light‐regulated ion flux have been constructed by introducing conductive polymer into porous nanochannels. The hybrid nanochannels are achieved by partially modifying alumina (Al2O3) nanopore arrays with polypyrrole (PPy) layer using electrochemical polymerization, which results in an asymmetric component distribution. The protonation and deprotonation of Al2O3 and PPy upon pH variation break the surface charge continuity, which contributes to the pH‐tunable ion rectification. The ionic current rectification ratio is affected substantially by the pH value of electrolyte and the pore size of nanochannels. Furthermore, the holes (positive charges) in PPy layer induced by the cooperative effect of light and protons are used to regulate the ionic flux through the nanochannels, which results in a light‐responsive ion current. The magnitude of responsive ionic current could be amplified by optimizing this cooperation. This new type of stimuli‐responsive PPy/Al2O3 hybrid nanochannels features advantages of unique optical and electric properties from conducting PPy and high mechanical performance from porous Al2O3 membrane, which provide a platform for creating smart nanochannels system.  相似文献   

10.
Smart pH‐responsive surfaces that could autonomously induce unidirectional wetting of acid and base with reversed directions are fabricated. The smart surfaces, consisting of chemistry‐asymmetric “Janus” silicon cylinder arrays (Si‐CAs), are prepared by precise modification of functional groups on each cylinder unit. Herein, amino and carboxyl groups are chosen as typical pH‐responsive groups, owing to their protonation/deprotonation effect in response to pH of the contacted aqueous solution. One side of the Si‐CAs is modified by poly(2‐(dimethylamino)ethyl methacrylate), while the other side is modified by mixed self‐assembled monolayers of 1‐dodecanethiol and 11‐mercaptoundecanoic acid. On such surfaces, it is observed that acid and base wet in a unidirectional manner toward corresponding directions that are modified by amino or carboxyl groups, which is caused by asynchronous change of wetting property on two sides of the asymmetric structures. The as‐prepared Janus surfaces could regulate the wetting behavior of acid and base and could direct unidirectional wetting of water with reversed directions when the surfaces are treated by strong acid or base. Due to the excellent response capability, the smart surfaces are potential candidates to be applied in sensors, microfluidics, oil/water separation, and smart interfacial design.  相似文献   

11.
Batteries and supercapacitors are critical devices for electrical energy storage with wide applications from portable electronics to transportation and grid. However, rechargeable batteries are typically limited in power density, while supercapacitors suffer low energy density. Here, a novel symmetric Na‐ion pseudocapacitor with a power density exceeding 5.4 kW kg?1 at 11.7 A g?1, a cycling life retention of 64.5% after 10 000 cycles at 1.17 A g?1, and an energy density of 26 Wh kg?1 at 0.585 A g?1 is reported. Such a device operates on redox reactions occurring on both electrodes with an identical active material, viz., Na3V2(PO4)3 encapsulated inside nanoporous carbon. This device, in a full‐cell scale utilizing highly reversible and high‐rate Na‐ion intercalational pseudocapacitance, can bridge the performance gap between batteries and supercapacitors. The characteristics of the device and the potentially low‐cost production make it attractive for hybrid electric vehicles and low‐maintenance energy storage systems.  相似文献   

12.
13.
In this study, we report on a novel composite membrane system for pH‐responsive controlled release, which is composed of a porous membrane with linear grafted, positively pH‐responsive polymeric gates acting as functional valves, and a crosslinked, negatively pH‐responsive hydrogel inside the reservoir working as a functional pumping element. The proposed system features a large responsive release rate that goes effectively beyond the limit of concentration‐driven diffusion due to the pumping effects of the negatively pH‐responsive hydrogel inside the reservoir. The pH‐responsive gating membranes were prepared by grafting poly(methacrylic acid) (PMAA) linear chains onto porous polyvinylidene fluoride (PVDF) membrane substrates using a plasma‐graft pore‐filling polymerization, and the crosslinked poly(N,N‐dimethylaminoethyl methacrylate) (PDM) hydrogels were synthesized by free radical polymerization. The volume phase‐transition characteristics of PMAA and PDM were opposite. The proposed system opens new doors for pH‐responsive “smart” or “intelligent” controlled‐release systems, which are highly attractive for drug‐delivery systems, chemical carriers, sensors, and so on.  相似文献   

14.
This article presents the synthesis and physicochemical behavior of dual‐responsive plasmonic nanoparticles with reversible optical properties based on protein‐coated gold nanoparticles grafted with thermosensitive polymer brushes by means of surface‐initiated atom transfer radical polymerization (SI‐ATRP) that exhibit pH‐dependent thermo‐responsive behavior. Spherical gold NPs of two different sizes (15 nm and 60 nm) and with different stabilizing agents (citrate and cetyltrimethylammonium bromide (CTAB), respectively) were first capped with bovine serum albumin (BSA). The resulting BSA‐capped NPs (Au@BSA NPs) exhibited not only extremely high colloidal stability under physiological conditions, but also a reversible U‐shaped pH‐responsive behavior, similar to pure BSA. The ?‐amine of the L‐lysine in the protein coating was then used to covalently bind an ATRP‐initiator, allowing for the SI‐ATRP of thermosensitive polymer brushes of oligo(ethylene glycol) methacrylates with an LCST of 42 °C in pure water and around 37 °C under physiological conditions. Such protein coated nanoparticles grafted with thermosensitive polymers exhibit a smart pH‐dependent thermosensitive behavior.  相似文献   

15.
Antibacterial efficiency can be effectively improved by applying targeting antibacterial materials and strategies. Herein, the successful synthesis of uniform pH‐responsive Ag nanoparticle clusters (AgNCs) is demonstrated, which can collapse and reassemble into nonuniform Ag NPs upon exposure to the acidic microenvironment of bacterial infections. This pH triggered reassembly contributes greatly to the improved antibacterial activities of AgNCs against both methicillin‐resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). The minimum inhibitory concentration and minimum bactericidal concentration against MRSA are as low as 4 and 32 µg mL?1 (which are 8 and 32 µg mL?1 for E. coli), respectively. In vivo skin wound healing experiments confirm AgNCs can serve as an effective wound dressing to accelerate the healing of MRSA infection. The development of responsive AgNCs offers new materials and strategies in targeting antibacterial applications.  相似文献   

16.
Smart motions of objects from the submicrometer to millimeter scale through chemical control with stimulus‐responsive way are significant to achieve various applications. However, the intelligence of the current devices with chemical responding system remains to be improved; especially, achieving a round‐way motion is still a challenge. Therefore, two types of actuators are simultaneously integrated into single smart device at the opposite ends to achieve cooperated functions in an orderly manner. One actuator is the pH‐responsive power supply of hydrogen bubbles produced from the reaction between magnesium and HCl. The smart device undergoes on–off–on locomotion through control over the solution pH values by using the pH‐responsive actuator of magnesium–HCl system. The other actuator is the hydrogen peroxide‐responsive system of oxygen bubbles generated through the decomposition of hydrogen peroxide catalyzed by platinum aggregates. When introducing hydrogen peroxide solution into the system, the generated oxygen bubbles at the opposite end of the device to push the device backward for round‐way motions. For the first time, two different types of actuators are simultaneously integrated into single smart device without disturbing each other, which realize pH‐responsive round‐way motions of the smart device and improve the system intelligence for further applications.  相似文献   

17.
The condensed tumor extracellular matrix (ECM) consisting of cross‐linked hyaluronic acid (HA) is one of key factors that results in the aberrant tumor microenvironment (TME) and the resistance to various types of therapies. Herein, hyaluronidase (HAase) is modified by a biocompatible polymer, dextran (DEX), via a pH‐responsive traceless linker. The formulated DEX‐HAase nanoparticles show enhanced enzyme stability, reduced immunogenicity, and prolonged blood half‐life after intravenous injection. With efficient tumor passive accumulation, DEX‐HAase within the acidic TME would be dissociated to release native HAase, which afterward triggers the breakdown of HA to loosen the ECM structure, subsequently leading to enhanced penetration of oxygen and other therapeutic agents. The largely relieved tumor hypoxia would promote the therapeutic effect of nanoparticle‐based photodynamic therapy (PDT), accompanied by the reverse of the immunosuppressive TME to boost cancer immunotherapy. Interestingly, the therapeutic responses achieved by the combination of PDT and anti‐programmed death‐ligand 1 (anti‐PD‐L1) checkpoint blockade therapy could be significantly enhanced by pretreatment with DEX‐HAase. In addition to destructing tumors with direct light exposure, a robust abscopal effect is achieved after such treatment, which is promising for tumor metastasis inhibition. The work presents a new type of adjuvant nanomedicine to assist photodynamic‐immunotherapy of cancer, by effective modulation of TME.  相似文献   

18.
The acquisition of multidrug resistance (MDR) is a major hurdle for the successful chemotherapy of tumors. Herein, a novel hybrid micelle with pH and near‐infrared (NIR) light dual‐responsive property is reported for reversing doxorubicin (DOX) resistance in breast cancer. The hybrid micelles are designed to integrate the pH‐ and NIR light‐responsive property of an amphiphilic diblock polymer and the high DOX loading capacity of a polymeric prodrug into one single nanocomposite. At physiological condition (i.e., pH 7.4), the micelles form compact nanostructure with particle size around 30 nm to facilitate blood circulation and passive tumor targeting. Meanwhile, the micelles are quickly dissociated in weakly acidic environment (i.e., pH ≤ 6.2) to release DOX prodrug. When exposed to NIR laser irradiation, the hybrid micelles can trigger notable tumor penetration and cytosol release of DOX payload by inducing tunable hyperthermia effect. In combination with localized NIR laser irradiation, the hybrid micelles significantly inhibit the growth of DOX‐resistant MCF‐7/ADR breast cancer in an orthotopic tumor bearing mouse model. Taken together, this pH and NIR light‐responsive micelles with hyperthermia‐triggered tumor penetration and cytoplasm drug release can be an effective nanoplatform to combat cancer MDR.  相似文献   

19.
In this paper, we analyze the tradeoff between outage probability (OP) and intercept probability (IP) for a multi‐hop relaying scheme in cognitive radio (CR) networks. In the proposed protocol, a multi‐antenna primary transmitter (PT) communicates with a multi‐antenna primary receiver (PR), using transmit antenna selection (TAS) / selection combining (SC) technique, while a secondary source attempts to transmit its data to a secondary destination via a multi‐hop approach in presence of a secondary eavesdropper. The secondary transmitters such as source and relays have to adjust their transmit power to satisfy total interference constraint given by PR. We consider an asymmetric fading channel model, where the secondary channels are Rician fading, while the remaining ones experience the Rayleigh fading. Moreover, an optimal interference allocation method is proposed to minimize OP of the primary network. For the secondary network, we derive exact expressions of end‐to‐end OP and IP which are verified by Monte Carlo simulations.  相似文献   

20.
Although various types of radiosensitizers based on nanoparticles are explored to enhance radiotherapy via different mechanisms, nanoscale radiosensitizers with full biodegradability, sensitive responsiveness to the tumor microenvironment, as well as the ability to greatly amplify radiation‐induced tumor destruction are still demanded. Herein, this study designs nanoscale coordination polymers (NCPs) based on acidic sensitive linker and high Z number element hafnium (Hf) ions. Chloro(triphenylphosphine)gold(I) (TPPGC), a chemotherapeutic drug, is successfully loaded into those NCPs after they are coated with polyethylene glycol (PEG). Owing to the acid‐triggered cleavage of the organic linker, such formed NCP‐PEG/TPPGC nanoparticles would be dissociated under reduced pH within the tumor, leading to the release of TPPGC to induce mitochondrial damage and arrest the cell cycle of tumor cells into the radiosensitive phase (G1). Meanwhile, Hf ions are able to act as radiosensitizers by absorbing X‐ray and depositing radiation energy within tumors. With efficient tumor accumulation after intravenous injection, NCP‐PEG/TPPGC offers remarkable synergistic therapeutic outcome in chemoradiotherapy without appreciable toxic side effect. This work thus presents a biodegradable nano‐radiosensitizer with in vivo tumor‐specific decomposition/drug release profiles and great efficacy in chemoradiotherapy of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号